Predicting the Number of Clusters (K) Without Distance and Statistical Analysis
Clustering is a fundamental task in unsupervised learning, essential for data analysis and pattern recognition. A significant limitation of traditional clustering algorithms is the need to predefine the number of clusters (k -value), a hyperparameter that can heavily influence results. This paper pr...
Uložené v:
| Vydané v: | International Conference on Knowledge and Smart Technology s. 76 - 81 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
26.02.2025
|
| Predmet: | |
| ISSN: | 2473-764X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Clustering is a fundamental task in unsupervised learning, essential for data analysis and pattern recognition. A significant limitation of traditional clustering algorithms is the need to predefine the number of clusters (k -value), a hyperparameter that can heavily influence results. This paper presents a novel approach that leverages latent vector transformation to predict the optimal k -value based on the distribution patterns of data points, eliminating the need for prior parameter specification. By utilizing synthetic data distributions that range from single to multiple clusters, we demonstrate how a neural network can be trained to effectively identify the underlying structure of the data, thus enhancing the clustering process. |
|---|---|
| ISSN: | 2473-764X |
| DOI: | 10.1109/KST65016.2025.11003305 |