Predicting the Number of Clusters (K) Without Distance and Statistical Analysis

Clustering is a fundamental task in unsupervised learning, essential for data analysis and pattern recognition. A significant limitation of traditional clustering algorithms is the need to predefine the number of clusters (k -value), a hyperparameter that can heavily influence results. This paper pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Knowledge and Smart Technology s. 76 - 81
Hlavní autori: Rabari, Rohhan, Lursinsap, Chidchanok
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 26.02.2025
Predmet:
ISSN:2473-764X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Clustering is a fundamental task in unsupervised learning, essential for data analysis and pattern recognition. A significant limitation of traditional clustering algorithms is the need to predefine the number of clusters (k -value), a hyperparameter that can heavily influence results. This paper presents a novel approach that leverages latent vector transformation to predict the optimal k -value based on the distribution patterns of data points, eliminating the need for prior parameter specification. By utilizing synthetic data distributions that range from single to multiple clusters, we demonstrate how a neural network can be trained to effectively identify the underlying structure of the data, thus enhancing the clustering process.
ISSN:2473-764X
DOI:10.1109/KST65016.2025.11003305