Predicting the Number of Clusters (K) Without Distance and Statistical Analysis

Clustering is a fundamental task in unsupervised learning, essential for data analysis and pattern recognition. A significant limitation of traditional clustering algorithms is the need to predefine the number of clusters (k -value), a hyperparameter that can heavily influence results. This paper pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Knowledge and Smart Technology s. 76 - 81
Hlavní autoři: Rabari, Rohhan, Lursinsap, Chidchanok
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.02.2025
Témata:
ISSN:2473-764X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering is a fundamental task in unsupervised learning, essential for data analysis and pattern recognition. A significant limitation of traditional clustering algorithms is the need to predefine the number of clusters (k -value), a hyperparameter that can heavily influence results. This paper presents a novel approach that leverages latent vector transformation to predict the optimal k -value based on the distribution patterns of data points, eliminating the need for prior parameter specification. By utilizing synthetic data distributions that range from single to multiple clusters, we demonstrate how a neural network can be trained to effectively identify the underlying structure of the data, thus enhancing the clustering process.
ISSN:2473-764X
DOI:10.1109/KST65016.2025.11003305