Unsupervised Autoencoder Approach for Precise Line-Type Mura Detection and Classification
Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize de...
Uloženo v:
| Vydáno v: | IEEE International Conference on Consumer Electronics-China (Online) s. 507 - 508 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.07.2025
|
| Témata: | |
| ISSN: | 2575-8284 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize defects. We combine an autoencoder with computer vision to simulate a supervised model. This approach not only improves defect reconstruction quality but also achieves 90% precision while improving recall by 30%. Our method enhances defect detection accuracy, providing a data-efficient, scalable solution for quality control in panel manufacturing |
|---|---|
| AbstractList | Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize defects. We combine an autoencoder with computer vision to simulate a supervised model. This approach not only improves defect reconstruction quality but also achieves 90% precision while improving recall by 30%. Our method enhances defect detection accuracy, providing a data-efficient, scalable solution for quality control in panel manufacturing |
| Author | Lin, Chia-Yu Chang, Ting-Yu |
| Author_xml | – sequence: 1 givenname: Ting-Yu surname: Chang fullname: Chang, Ting-Yu organization: National Central University,Department of Computer Science and Information Engineering,Taoyuan,Taiwan – sequence: 2 givenname: Chia-Yu surname: Lin fullname: Lin, Chia-Yu email: sallylin0121@ncu.edu.tw organization: National Central University,Department of Computer Science and Information Engineering,Taoyuan,Taiwan |
| BookMark | eNo1UFFLwzAYjKLgnP0HPuTJt84kX9Mkj6NOHVT0oT74NLL0K0ZmWpJO2b-3Q4WDg7vj4O6SnIU-ICE3nC04Z-Z2XVWrvLH-24ay1JovBBNysgRTmpkTkhllNACXWhUcTslMSCVzLXRxQbKUPhhjwA1j3MzI22tI-wHjl0_Y0uV-7DG4vsVIl8MQe-veaddH-hLRTQla-4B5cxiQPu2jpXc4oht9H6gNLa12NiXfeWeP0hU57-wuYfbHc9Lcr5rqMa-fH9bVss69gTF3utWlclZZ2Sl0Qk1TSgCrQTqmt-BMBwakBrUtCtVKXpoWmSxEVx7hYE6uf2s9Im6G6D9tPGz-z4AfIBVYVQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCE-Taiwan66881.2025.11207809 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331587413 |
| EISSN | 2575-8284 |
| EndPage | 508 |
| ExternalDocumentID | 11207809 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Central University funderid: 10.13039/501100005319 – fundername: Research and Development funderid: 10.13039/100006190 – fundername: National Science and Technology Council funderid: 10.13039/501100020950 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-c8d867ca7a5f7ec27025633a835c08b3c9f3935837b447d5169de0542f62f62c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Nov 05 07:14:46 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-c8d867ca7a5f7ec27025633a835c08b3c9f3935837b447d5169de0542f62f62c3 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_11207809 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-July-16 |
| PublicationDateYYYYMMDD | 2025-07-16 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-July-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Consumer Electronics-China (Online) |
| PublicationTitleAbbrev | ICCE-Taiwan |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003190019 |
| Score | 1.915206 |
| Snippet | Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 507 |
| SubjectTerms | Anomaly localization Autoencoder Autoencoders Computational modeling Consumer electronics Defect detection Inspection Location awareness Manufacturing mura detection Object detection Quality control Unsupervised learning |
| Title | Unsupervised Autoencoder Approach for Precise Line-Type Mura Detection and Classification |
| URI | https://ieeexplore.ieee.org/document/11207809 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagQggWXkW85QGxuU3rJLbHqrQCCVUdCipT5dhnqUtapQn8fXxuWmBgQMoQZbCiuyj33eP7jpB7AVyojk9yokxFLNaZZtphw1V3rBMGIhuklN5exGgkp1M1rsnqgQsDAGH4DFp4G3r5dmEqLJW1PTbwEQ3pertCpGuy1rag4r8lxCv75KHW0Ww_9_sDNtHzT52nqZSYDXaT1uaQX-tUQjQZHv3zPY5J85uXR8fbiHNCdiA_JYc_JAXPyPtrvqqW-ANYgaW9qlygUqWFgvZq9XDqYao_BXfrAPWpKDDMRam3uKaPUIbRrJzq3NKwMBNHiYL3mmQyHEz6T6xen8DmipfMSCtTYbTQiRNgkHeWpJxrD7lMJDNulAvqZ1xkcSws9ssseADXdSlehp-TRr7I4YJQn-Np3vVQhXMROzDKgx6dRCZRToG06pI00Uiz5VogY7axz9Ufz6_JAboCS6Sd9IY0yqKCW7JnPsr5qrgLbv0CfTujJw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4YND4uvjC-3YPxVihs2-0eCUIgIuFQDZ7IsjtNuBQCrf59d9aCevBg0kPTw6aZaTrfPL5vAO4FciEbNsnxp9L3AjVVnkqp4aoaJhUafeOklF4HYjiMx2M5KsnqjguDiG74DGt063r5Zq4LKpXVLTawEY3oetu0Oquka21KKvZrIsSyCw-lkma93253vETNPlQWRXFM-WAzrK2P-bVQxcWT7uE_3-QIqt_MPDbaxJxj2MLsBA5-iAqewttLtioW9AtYoWGtIp-TVqXBJWuV-uHMAlV7Cm3XQWaTUfQoG2XW5oo9Yu6GszKmMsPcykwaJnL-q0LS7STtnlcuUPBmkueejk0cCa2EClOBmphnYcS5sqBL-_GUa5k6_TMupkEgDHXMDFoI10wjujQ_g0o2z_AcmM3yFG9asMK5CFLU0sIeFfo6lKnE2MgLqJKRJosviYzJ2j6Xfzy_g71e8jyYDPrDpyvYJ7dQwbQRXUMlXxZ4Azv6PZ-tlrfOxZ8s3KZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Consumer+Electronics-China+%28Online%29&rft.atitle=Unsupervised+Autoencoder+Approach+for+Precise+Line-Type+Mura+Detection+and+Classification&rft.au=Chang%2C+Ting-Yu&rft.au=Lin%2C+Chia-Yu&rft.date=2025-07-16&rft.pub=IEEE&rft.eissn=2575-8284&rft.spage=507&rft.epage=508&rft_id=info:doi/10.1109%2FICCE-Taiwan66881.2025.11207809&rft.externalDocID=11207809 |