Unsupervised Autoencoder Approach for Precise Line-Type Mura Detection and Classification

Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Consumer Electronics-China (Online) s. 507 - 508
Hlavní autoři: Chang, Ting-Yu, Lin, Chia-Yu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.07.2025
Témata:
ISSN:2575-8284
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize defects. We combine an autoencoder with computer vision to simulate a supervised model. This approach not only improves defect reconstruction quality but also achieves 90% precision while improving recall by 30%. Our method enhances defect detection accuracy, providing a data-efficient, scalable solution for quality control in panel manufacturing
AbstractList Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize defects. We combine an autoencoder with computer vision to simulate a supervised model. This approach not only improves defect reconstruction quality but also achieves 90% precision while improving recall by 30%. Our method enhances defect detection accuracy, providing a data-efficient, scalable solution for quality control in panel manufacturing
Author Lin, Chia-Yu
Chang, Ting-Yu
Author_xml – sequence: 1
  givenname: Ting-Yu
  surname: Chang
  fullname: Chang, Ting-Yu
  organization: National Central University,Department of Computer Science and Information Engineering,Taoyuan,Taiwan
– sequence: 2
  givenname: Chia-Yu
  surname: Lin
  fullname: Lin, Chia-Yu
  email: sallylin0121@ncu.edu.tw
  organization: National Central University,Department of Computer Science and Information Engineering,Taoyuan,Taiwan
BookMark eNo1UFFLwzAYjKLgnP0HPuTJt84kX9Mkj6NOHVT0oT74NLL0K0ZmWpJO2b-3Q4WDg7vj4O6SnIU-ICE3nC04Z-Z2XVWrvLH-24ay1JovBBNysgRTmpkTkhllNACXWhUcTslMSCVzLXRxQbKUPhhjwA1j3MzI22tI-wHjl0_Y0uV-7DG4vsVIl8MQe-veaddH-hLRTQla-4B5cxiQPu2jpXc4oht9H6gNLa12NiXfeWeP0hU57-wuYfbHc9Lcr5rqMa-fH9bVss69gTF3utWlclZZ2Sl0Qk1TSgCrQTqmt-BMBwakBrUtCtVKXpoWmSxEVx7hYE6uf2s9Im6G6D9tPGz-z4AfIBVYVQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCE-Taiwan66881.2025.11207809
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331587413
EISSN 2575-8284
EndPage 508
ExternalDocumentID 11207809
Genre orig-research
GrantInformation_xml – fundername: National Central University
  funderid: 10.13039/501100005319
– fundername: Research and Development
  funderid: 10.13039/100006190
– fundername: National Science and Technology Council
  funderid: 10.13039/501100020950
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-c8d867ca7a5f7ec27025633a835c08b3c9f3935837b447d5169de0542f62f62c3
IEDL.DBID RIE
IngestDate Wed Nov 05 07:14:46 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-c8d867ca7a5f7ec27025633a835c08b3c9f3935837b447d5169de0542f62f62c3
PageCount 2
ParticipantIDs ieee_primary_11207809
PublicationCentury 2000
PublicationDate 2025-July-16
PublicationDateYYYYMMDD 2025-07-16
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-16
  day: 16
PublicationDecade 2020
PublicationTitle IEEE International Conference on Consumer Electronics-China (Online)
PublicationTitleAbbrev ICCE-Taiwan
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190019
Score 1.915206
Snippet Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data,...
SourceID ieee
SourceType Publisher
StartPage 507
SubjectTerms Anomaly localization
Autoencoder
Autoencoders
Computational modeling
Consumer electronics
Defect detection
Inspection
Location awareness
Manufacturing
mura detection
Object detection
Quality control
Unsupervised learning
Title Unsupervised Autoencoder Approach for Precise Line-Type Mura Detection and Classification
URI https://ieeexplore.ieee.org/document/11207809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagQggWXkW85QGxuU3rJLbHqrQCCVUdCipT5dhnqUtapQn8fXxuWmBgQMoQZbCiuyj33eP7jpB7AVyojk9yokxFLNaZZtphw1V3rBMGIhuklN5exGgkp1M1rsnqgQsDAGH4DFp4G3r5dmEqLJW1PTbwEQ3pertCpGuy1rag4r8lxCv75KHW0Ww_9_sDNtHzT52nqZSYDXaT1uaQX-tUQjQZHv3zPY5J85uXR8fbiHNCdiA_JYc_JAXPyPtrvqqW-ANYgaW9qlygUqWFgvZq9XDqYao_BXfrAPWpKDDMRam3uKaPUIbRrJzq3NKwMBNHiYL3mmQyHEz6T6xen8DmipfMSCtTYbTQiRNgkHeWpJxrD7lMJDNulAvqZ1xkcSws9ssseADXdSlehp-TRr7I4YJQn-Np3vVQhXMROzDKgx6dRCZRToG06pI00Uiz5VogY7axz9Ufz6_JAboCS6Sd9IY0yqKCW7JnPsr5qrgLbv0CfTujJw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4YND4uvjC-3YPxVihs2-0eCUIgIuFQDZ7IsjtNuBQCrf59d9aCevBg0kPTw6aZaTrfPL5vAO4FciEbNsnxp9L3AjVVnkqp4aoaJhUafeOklF4HYjiMx2M5KsnqjguDiG74DGt063r5Zq4LKpXVLTawEY3oetu0Oquka21KKvZrIsSyCw-lkma93253vETNPlQWRXFM-WAzrK2P-bVQxcWT7uE_3-QIqt_MPDbaxJxj2MLsBA5-iAqewttLtioW9AtYoWGtIp-TVqXBJWuV-uHMAlV7Cm3XQWaTUfQoG2XW5oo9Yu6GszKmMsPcykwaJnL-q0LS7STtnlcuUPBmkueejk0cCa2EClOBmphnYcS5sqBL-_GUa5k6_TMupkEgDHXMDFoI10wjujQ_g0o2z_AcmM3yFG9asMK5CFLU0sIeFfo6lKnE2MgLqJKRJosviYzJ2j6Xfzy_g71e8jyYDPrDpyvYJ7dQwbQRXUMlXxZ4Azv6PZ-tlrfOxZ8s3KZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Consumer+Electronics-China+%28Online%29&rft.atitle=Unsupervised+Autoencoder+Approach+for+Precise+Line-Type+Mura+Detection+and+Classification&rft.au=Chang%2C+Ting-Yu&rft.au=Lin%2C+Chia-Yu&rft.date=2025-07-16&rft.pub=IEEE&rft.eissn=2575-8284&rft.spage=507&rft.epage=508&rft_id=info:doi/10.1109%2FICCE-Taiwan66881.2025.11207809&rft.externalDocID=11207809