Unsupervised Autoencoder Approach for Precise Line-Type Mura Detection and Classification

Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Consumer Electronics-China (Online) s. 507 - 508
Hlavní autoři: Chang, Ting-Yu, Lin, Chia-Yu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.07.2025
Témata:
ISSN:2575-8284
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mura refers to surface defects or uneven brightness in panel manufacturing and is classified by severity into light Mura and serious Mura. Due to limited data, traditional object detection is not feasible. Instead, we propose an unsupervised method to classify serious Mura and accurately localize defects. We combine an autoencoder with computer vision to simulate a supervised model. This approach not only improves defect reconstruction quality but also achieves 90% precision while improving recall by 30%. Our method enhances defect detection accuracy, providing a data-efficient, scalable solution for quality control in panel manufacturing
ISSN:2575-8284
DOI:10.1109/ICCE-Taiwan66881.2025.11207809