Improved Crayfish Optimization Algorithm for Solving Feature Selection Problem

To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control and Decision Conference S. 3514 - 3519
Hauptverfasser: Rao, Honghua, Jia, Heming, Shi, Xiaoming, You, Fangkai, Xue, Bowen, Du, Yilong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 16.05.2025
Schlagworte:
ISSN:1948-9447
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algorithm to converge better. Then, the population evolution strategy is proposed through the crossevolution of the historical and current populations. The population evolution strategy improves the information interaction between populations and the convergence effect of the algorithm. To verify the optimization effect of ICOA, the CEC2020 test function and feature selection are used as experiments. Comparative experiments are conducted between ICOA and various algorithms. The results indicate that ICOA has better optimization effects.
ISSN:1948-9447
DOI:10.1109/CCDC65474.2025.11090177