MDPR-Net: Dynamic Target Interference Removal and Autonomous Vehicle Place Recognition Network for Multi-View Images
Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-...
Gespeichert in:
| Veröffentlicht in: | IEEE International Conference on Industrial Technology (Online) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
26.03.2025
|
| Schlagworte: | |
| ISSN: | 2643-2978 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-degree images. The dynamic interference removal module (DIR) eliminates dynamic targets filtering, ensuring precise environmental perception. Following DIR, a multi-view image encoder module (MIE) encodes the filtered panoramic images with shared weights, capturing comprehensive features. The image-relation attention module (IRA) then associates these features across multi-view images, enhancing the model's ability to understand the scene contextually. This approach is demonstrated on the nuScenes dataset, yielding promising results. |
|---|---|
| AbstractList | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-degree images. The dynamic interference removal module (DIR) eliminates dynamic targets filtering, ensuring precise environmental perception. Following DIR, a multi-view image encoder module (MIE) encodes the filtered panoramic images with shared weights, capturing comprehensive features. The image-relation attention module (IRA) then associates these features across multi-view images, enhancing the model's ability to understand the scene contextually. This approach is demonstrated on the nuScenes dataset, yielding promising results. |
| Author | Zhao, Fenglei Li, Zhongzheng Kong, Dong Zhang, Shuo Sun, Xiaoyu Zhang, Liye |
| Author_xml | – sequence: 1 givenname: Shuo surname: Zhang fullname: Zhang, Shuo email: shuo0028@sdust.edu.cn organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 2 givenname: Zhongzheng orcidid: 0009-0005-2172-5283 surname: Li fullname: Li, Zhongzheng organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 3 givenname: Xiaoyu orcidid: 0009-0005-6934-6485 surname: Sun fullname: Sun, Xiaoyu organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 4 givenname: Fenglei orcidid: 0009-0009-0469-2693 surname: Zhao fullname: Zhao, Fenglei organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 5 givenname: Dong orcidid: 0000-0002-1864-423X surname: Kong fullname: Kong, Dong organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 6 givenname: Liye orcidid: 0000-0003-0965-2374 surname: Zhang fullname: Zhang, Liye organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China |
| BookMark | eNo1kF1LwzAYhaMoOOf-gWD-QGeaN0kb78bmR2HTMcpuR0zfzmibSJs59u8dflwdeDg8cM4lOfPBIyE3KRunKdO3xbQoFSjIxpxxOT4iJbmEEzLSmc4BUslTLdkpGXAlIOE6yy_IqO_fGWPAGQihBiQuZstV8ozxjs4O3rTO0tJ0W4y08BG7Gjv0FukK2_BlGmp8RSe7GHxow66na3xztkG6bMxPyYatd9EFT4_Gfeg-aB06utg10SVrh3tatGaL_RU5r03T4-gvh6R8uC-nT8n85bGYTuaJ0xATjags57Wyr6kQUleguBEC7HEnZCgtZkZYTKvc5qxGkLkRTB2RrjKhkcOQXP9qHSJuPjvXmu6w-f8JvgFWIV9- |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIT63637.2025.10965253 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331521950 |
| EISSN | 2643-2978 |
| EndPage | 6 |
| ExternalDocumentID | 10965253 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-9ee6c22f6cb14459d362a443c96537e5ce7a4ce1d8c80fe358a406a4c9d749e23 |
| IEDL.DBID | RIE |
| IngestDate | Wed Apr 30 05:50:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9ee6c22f6cb14459d362a443c96537e5ce7a4ce1d8c80fe358a406a4c9d749e23 |
| ORCID | 0000-0002-1864-423X 0000-0003-0965-2374 0009-0005-6934-6485 0009-0005-2172-5283 0009-0009-0469-2693 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10965253 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-March-26 |
| PublicationDateYYYYMMDD | 2025-03-26 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Industrial Technology (Online) |
| PublicationTitleAbbrev | ICIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203446 |
| Score | 1.9034867 |
| Snippet | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Autonomous vehicles Context modeling Dynamic targets filtering Filters Image recognition Interference Location awareness Navigation Target recognition Vehicle dynamics Visual place recognition |
| Title | MDPR-Net: Dynamic Target Interference Removal and Autonomous Vehicle Place Recognition Network for Multi-View Images |
| URI | https://ieeexplore.ieee.org/document/10965253 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxQALryLe8sCa0voZs6GWikoQRVVUdatc-1Z0IEFtCr-P7TQFBga2yEqixHZyfY_PORehWzaLY2GYjAw1PGJ0TqKZFd73NrizSKUDdDF-lkkSTyYq3YjVgxYGAAL5DNr-MOzl28KsPVTmvnAlOOG0gRpSikqstQVUKPHudWLD4XKn3g17w0xQQaVLAwlv11f_qqMSwsjg4J8PcIha34I8nG5DzRHagfwY7f_wEjxB5Us_HUUJlPe4X1WZx1lgeeMA-tV3GcFb4SYX1rnFD-vSSxpc7o_H8OonEE49qo5HNauoyHFS8cSxW9zioNaNxgv4xMM39yNatVA2eMx6T9GmpEK0ULSMFIAwhMyFmblEiivrwpdmjBr3WlQCNyA1M9C1sYk7c6A81i7guyZlJVNA6Clq5kUOZwhrt65xWXmXkY5lSpsZ915osbWqyzTn9By1fP9N3yvTjGnddRd_tF-iPT9Knt5FxBVqlss1XKNd81EuVsubMNRfmNGplw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSLXxi_7cHrEPq11ZtBCYuwLGQh3MhoH5EDm4Gh_75tx1APHrwtzdZsfV1f3-vv93sI3bNJEAjFfE9RxT1Gp8SbaGF1b506iy9Tl7oY9vwoCkYjGa_J6o4LAwAOfAYNe-nO8nWuVjZVZv5wKTjhdBvtcMZIs6RrbVIqlFj9OrFGcZmbH8J2mAgqqG8CQcIb1fO_Kqk4R9I5_OcrHKH6NyUPxxtnc4y2IDtBBz_UBE9R0X-OB14ExSN-LuvM48ThvLFL-1W9DGCem-mF00zjp1VhSQ0m-sdDeLNTCMc2r44HFa4oz3BUIsWx2d5ix9f1hjP4xOHcLEXLOko6L0m7662LKngzSQtPAghFyFSoiQmluNTGgaWMUWU-i_rAFfgpU9DSgQqaU6A8SI3LN01S-0wCoWeoluUZnCOcmp2NictbxhCayVRNuFVDC7SWLZZyTi9Q3Y7f-L2UzRhXQ3f5R_sd2usm_d64F0avV2jfWsyCvYi4RrVisYIbtKs-itlycevM_gWXqaze |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Technology+%28Online%29&rft.atitle=MDPR-Net%3A+Dynamic+Target+Interference+Removal+and+Autonomous+Vehicle+Place+Recognition+Network+for+Multi-View+Images&rft.au=Zhang%2C+Shuo&rft.au=Li%2C+Zhongzheng&rft.au=Sun%2C+Xiaoyu&rft.au=Zhao%2C+Fenglei&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2643-2978&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIT63637.2025.10965253&rft.externalDocID=10965253 |