Iterative Decoding Algorithms Powered by Deep Learning

In this paper, we analyze the performance of neural belief propagation (BP) decoding on the additive white Gaussian noise (AWGN) channel, compared to the traditional BP algorithm. Previous investigations have shown that assigning pre-trained weights to BP messages can significantly improve the decod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 12th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN) S. 1 - 6
Hauptverfasser: Jovanovic, Dimitrije, Ivanis, Predrag
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 09.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze the performance of neural belief propagation (BP) decoding on the additive white Gaussian noise (AWGN) channel, compared to the traditional BP algorithm. Previous investigations have shown that assigning pre-trained weights to BP messages can significantly improve the decoding performance in case of high-density parity-check (HDPC) codes, by reducing the negative impact of short cycles. These weights are trained by a neural network whose structure matches the trellis of the decoder. Specifically, we show that medium-density paritycheck (MDPC) codes decoded with neural BP algorithm can achieve lower bit error rate versus HDPC codes with the same codeword length and the same code rate.
DOI:10.1109/IcETRAN66854.2025.11114279