Enhanced Fault Diagnosis Method for Cable Terminals in Distribution Networks Based on MIC and Improved Deep Belief Network

The stable operation of cable terminals in distribution networks is crucial for power systems. However, traditional fault diagnosis models suffer from inefficiency and insufficient reliability. To achieve precise fault diagnosis of cable terminals, this paper proposes a novel method integrating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 International Conference on Energy Technology and Electrical Engineering (ETEE) S. 411 - 414
Hauptverfasser: Yu, Jiarong, Liu, Ting, He, Jiao, Deng, Yong, Liu, Qujiang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 15.08.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The stable operation of cable terminals in distribution networks is crucial for power systems. However, traditional fault diagnosis models suffer from inefficiency and insufficient reliability. To achieve precise fault diagnosis of cable terminals, this paper proposes a novel method integrating the Maximum Information Coefficient (MIC) and an Improved Archimedes Optimization Algorithm (IAOA)-optimized Deep Belief Network (DBN). First, the MIC theory is applied to reduce dimensionality and extract key features from the dissolved gas concentration in insulating oil, identifying the most critical diagnostic indicators. Next, the selected features are fed into the DBN model. To address the challenge of hyperparameter selection in DBN, the IAOA is introduced for optimization. To enhance the global search capability of the Archimedes Optimization Algorithm (AOA) and prevent premature convergence, three improvement strategies are implemented: chaotic initialization, arithmetic crossover operator, and cosine-based density reduction factor. Finally, a fault simulation test platform for distribution cable terminals is established to collect sample data under different fault conditions and construct labeled datasets for validation. Experimental results demonstrate that the proposed method achieves an accuracy of 98.33% on the test set. Compared with conventional fault diagnosis models, the proposed approach exhibits superior stability and higher recognition accuracy.
AbstractList The stable operation of cable terminals in distribution networks is crucial for power systems. However, traditional fault diagnosis models suffer from inefficiency and insufficient reliability. To achieve precise fault diagnosis of cable terminals, this paper proposes a novel method integrating the Maximum Information Coefficient (MIC) and an Improved Archimedes Optimization Algorithm (IAOA)-optimized Deep Belief Network (DBN). First, the MIC theory is applied to reduce dimensionality and extract key features from the dissolved gas concentration in insulating oil, identifying the most critical diagnostic indicators. Next, the selected features are fed into the DBN model. To address the challenge of hyperparameter selection in DBN, the IAOA is introduced for optimization. To enhance the global search capability of the Archimedes Optimization Algorithm (AOA) and prevent premature convergence, three improvement strategies are implemented: chaotic initialization, arithmetic crossover operator, and cosine-based density reduction factor. Finally, a fault simulation test platform for distribution cable terminals is established to collect sample data under different fault conditions and construct labeled datasets for validation. Experimental results demonstrate that the proposed method achieves an accuracy of 98.33% on the test set. Compared with conventional fault diagnosis models, the proposed approach exhibits superior stability and higher recognition accuracy.
Author Liu, Qujiang
Yu, Jiarong
Deng, Yong
He, Jiao
Liu, Ting
Author_xml – sequence: 1
  givenname: Jiarong
  surname: Yu
  fullname: Yu, Jiarong
  organization: Chongqing Yudian Quality Testing Co., Ltd,Chongqing,China,401120
– sequence: 2
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  organization: Chongqing Yudian Quality Testing Co., Ltd,Chongqing,China,401120
– sequence: 3
  givenname: Jiao
  surname: He
  fullname: He, Jiao
  email: hj2897@163.com
  organization: Sichuan International Studies University,Sichuan,China,610065
– sequence: 4
  givenname: Yong
  surname: Deng
  fullname: Deng, Yong
  organization: Chongqing Yudian Quality Testing Co., Ltd,Chongqing,China,401120
– sequence: 5
  givenname: Qujiang
  surname: Liu
  fullname: Liu, Qujiang
  organization: Chongqing Yudian Quality Testing Co., Ltd,Chongqing,China,401120
BookMark eNo1kEFOwzAQRY0ECyi9ARK-QIoniZ14SdO0VGphk33lxGNqkdqRk4Lg9FiCrkb_6ekt5o5cO--QkEdgCwAmn-qmroWAki1SlvLIQKalFFdkLgtZZhlwBjnIW_JTu6NyHWq6Vud-oiur3p0f7Uj3OB29psYHWqm2R9pgOFmn-pFaF71xCrY9T9Y7-orTlw8fI12qMZYi2W8rqpym29MQ_GdkK8SBLrG3aC76PbkxsYbz_zsjzbpuqpdk97bZVs-7xMpsSgqOrelKLspSS1NozoROjWhZm0MuC5Ya6OLscqMLrpjiUQMGQqAE3SqezcjDX9Yi4mEI9qTC9-HykewXC5xcOw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ETEE66180.2025.11192896
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331501419
EndPage 414
ExternalDocumentID 11192896
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-75ebfc85688d9f7d506d2f6b0b4149702f1cf6bc4fd75a0a58d910166e91dba53
IEDL.DBID RIE
IngestDate Sat Oct 25 03:13:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-75ebfc85688d9f7d506d2f6b0b4149702f1cf6bc4fd75a0a58d910166e91dba53
PageCount 4
ParticipantIDs ieee_primary_11192896
PublicationCentury 2000
PublicationDate 2025-Aug.-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2025 International Conference on Energy Technology and Electrical Engineering (ETEE)
PublicationTitleAbbrev ETEE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9185457
Snippet The stable operation of cable terminals in distribution networks is crucial for power systems. However, traditional fault diagnosis models suffer from...
SourceID ieee
SourceType Publisher
StartPage 411
SubjectTerms Accuracy
Data models
deep belief network
Distribution networks
Fault diagnosis
Feature extraction
improved Archimedes optimization algorithm
Microwave integrated circuits
oil filled cable terminal
Oil filled cables
Optimization
Power cables
Power system stability
Title Enhanced Fault Diagnosis Method for Cable Terminals in Distribution Networks Based on MIC and Improved Deep Belief Network
URI https://ieeexplore.ieee.org/document/11192896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sCaNnHi2F7bpmKAqkOGbpU_RaQqrZqUgV_P2WmLGBjYktNJkXyKnt_5PR9CL0QrpV1KIpJTF3nEipRUIiLSGS6h4I4Go_Abm834YiHme7N68MJYa4P4zA78YzjLN2u9862yIfyXAghCfopOGcs7s9Zes5XEYliURQFww2OgfYQODtm_5qYE2Jhe_PODl6j_Y8DD8yO0XKETW1-jr6L-COf1eCp3qxZPOpVc1eD3MAYaw_4Tj70VCpedxGXV4KqGvOY41grPOtl3g0cAXwZDBOqAZW1w116A2MTaDR5Z2Jy6Q3ofldOiHL9G-9EJUSXSNmLUKqc5zTk3wjFD49wQl6tYZcCIWExcouFVZ84wKmNJIc3T-NyKxChJ0xvUq9e1vUVYOGssVzIz0gBVMVKRVFFDMs2tjjW5Q32_bstNdznG8rBk93_EH9C5r45vyyb0EfXa7c4-oTP92VbN9jmU9Bukt6aK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cCa1nHjxF7bpiqijTpk6Fb5U0Sq0qpJGfj12E5bxMDAlpxOiuRT9PzO7_kAeMVSCGl6OMAxMYFDrEBwwQLMjaLcFtwQbxSeJFlG53M225nVvRdGa-3FZ7rjHv1ZvlrJrWuVde1_ySxBiI_BCYkijBq71k61FSLWTfM0tYBDkSV-mHT2-b8mp3jgGF3885OXoP1jwYOzA7hcgSNdXoOvtPzwJ_ZwxLfLGg4bnVxRwakfBA3tDhQOnBkK5o3IZVnBorR51WGwFcwa4XcF-xbAFLQRWwnISwWbBoONDbVew76221OzT2-DfJTmg3GwG54QFKxXBwnRwkhKYkoVM4kiKFbYxAKJyHKiBGETSvsqI6MSwhEnNs0R-VizUAlOejegVa5KfQsgM1ppKnikuLJkRXGBe4IoHEmqJZL4DrTdui3WzfUYi_2S3f8RfwFn43w6WUzesvcHcO4q5Zq0IXkErXqz1U_gVH7WRbV59uX9BnirqdE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Energy+Technology+and+Electrical+Engineering+%28ETEE%29&rft.atitle=Enhanced+Fault+Diagnosis+Method+for+Cable+Terminals+in+Distribution+Networks+Based+on+MIC+and+Improved+Deep+Belief+Network&rft.au=Yu%2C+Jiarong&rft.au=Liu%2C+Ting&rft.au=He%2C+Jiao&rft.au=Deng%2C+Yong&rft.date=2025-08-15&rft.pub=IEEE&rft.spage=411&rft.epage=414&rft_id=info:doi/10.1109%2FETEE66180.2025.11192896&rft.externalDocID=11192896