Variable-Length Feedback Codes via Deep Learning
Variable-length feedback coding has the potential to significantly enhance communication reliability in finite block length scenarios by adapting coding strategies based on real-time receiver feedback. Designing such codes, however, is challenging. While deep learning (DL) has been employed to desig...
Uložené v:
| Vydané v: | IEEE International Conference on Communications (2003) s. 3864 - 3869 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
08.06.2025
|
| Predmet: | |
| ISSN: | 1938-1883 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Variable-length feedback coding has the potential to significantly enhance communication reliability in finite block length scenarios by adapting coding strategies based on real-time receiver feedback. Designing such codes, however, is challenging. While deep learning (DL) has been employed to design sophisticated feedback codes, existing DL-aided feedback codes are predominantly fixed-length and suffer performance degradation in the high code rate regime, limiting their adaptability and efficiency. This paper introduces deep variable-length feedback (DeepVLF) code, a novel DL-aided variable-length feedback coding scheme. By segmenting messages into multiple bit groups and employing a threshold-based decoding mechanism for independent decoding of each bit group across successive communication rounds, DeepVLF outperforms existing DL-based feedback codes and establishes a new benchmark in feedback channel coding. |
|---|---|
| ISSN: | 1938-1883 |
| DOI: | 10.1109/ICC52391.2025.11160936 |