A Data-Driven Framework for Postural Assessment in Combat Skill Instruction Using Embedded Inertial Micro-Sensing
In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and injury prevention. With the evolution of micro-electromechanical systems (MEMS), wearable sensor arrays have become increasingly compact, ef...
Saved in:
| Published in: | 2025 5th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA) pp. 840 - 843 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
20.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and injury prevention. With the evolution of micro-electromechanical systems (MEMS), wearable sensor arrays have become increasingly compact, efficient, and suitable for long-duration, unobtrusive motion tracking. In this study, a wearable lower-limb monitoring system is introduced, which integrates tri-axial inertial sensing modules comprising accelerometric, gyroscopic, and magnetometric units. To enhance the reliability of multi-modal kinematic signals, an adaptive fusion framework is constructed, incorporating quaternion-based orientation estimation and magnetic field calibration via ellipsoid compensation techniques. This system enables the extraction of joint kinematic parameters and supports the development of a comprehensive dataset tailored to martial arts biomechanics. Building upon this dataset, a regression-based predictive model is trained to quantify technical execution quality and estimate susceptibility to musculoskeletal strain. The resulting system facilitates decision-making in instructional contexts by offering interpretable, data-driven insights that inform skill refinement and safety interventions. |
|---|---|
| AbstractList | In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and injury prevention. With the evolution of micro-electromechanical systems (MEMS), wearable sensor arrays have become increasingly compact, efficient, and suitable for long-duration, unobtrusive motion tracking. In this study, a wearable lower-limb monitoring system is introduced, which integrates tri-axial inertial sensing modules comprising accelerometric, gyroscopic, and magnetometric units. To enhance the reliability of multi-modal kinematic signals, an adaptive fusion framework is constructed, incorporating quaternion-based orientation estimation and magnetic field calibration via ellipsoid compensation techniques. This system enables the extraction of joint kinematic parameters and supports the development of a comprehensive dataset tailored to martial arts biomechanics. Building upon this dataset, a regression-based predictive model is trained to quantify technical execution quality and estimate susceptibility to musculoskeletal strain. The resulting system facilitates decision-making in instructional contexts by offering interpretable, data-driven insights that inform skill refinement and safety interventions. |
| Author | Song, Guodong Liang, Jie Zeng, Qin |
| Author_xml | – sequence: 1 givenname: Qin surname: Zeng fullname: Zeng, Qin email: 457515840@qq.com organization: Officers College of PAP,Chengdu,China – sequence: 2 givenname: Jie surname: Liang fullname: Liang, Jie email: 774751854@qq.com organization: Officers College of PAP,Chengdu,China – sequence: 3 givenname: Guodong surname: Song fullname: Song, Guodong email: 549235322@qq.com organization: Officers College of PAP,Chengdu,China |
| BookMark | eNo1kEtOwzAYhI0ECyi9AQtzgBS_EtvLkBaoVARSy7qykz_IamKD7YK4PUHAaqT5ZmYxF-jUBw8IXVOyoJTom6Ze3y7rqpRKLBhh5eRSxSkRJ2iupVac05JVlaDn6L3GS5NNsYzuAzy-i2aEzxAPuA8RP4eUj9EMuE4JUhrBZ-w8bsJoTcbbgxsGvPYpx2ObXfD4JTn_ilejha6DbkIQs5vqj66NodiC_-GX6Kw3Q4L5n87Q7m61ax6KzdP9uqk3hdM8FxU1SnLZcqU0EFtyKXrQpJJMCypsK0FYJkARA722nHWclLyzZMpYVhnDZ-jqd9YBwP4tutHEr_3_EfwbH15Zdg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CAIBDA65784.2025.11183104 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331526641 |
| EndPage | 843 |
| ExternalDocumentID | 11183104 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-61a8737c3889e0b5374fe906729414bc7e4b24e80aef9b32d3053db0e90b26aa3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 15 14:21:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-61a8737c3889e0b5374fe906729414bc7e4b24e80aef9b32d3053db0e90b26aa3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_11183104 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-20 |
| PublicationDateYYYYMMDD | 2025-06-20 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 5th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA) |
| PublicationTitleAbbrev | CAIBDA |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9123678 |
| Snippet | In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 840 |
| SubjectTerms | Biomechanics Data Fusion Algorithms Injuries Injury Risk Prediction Kinematics Martial Arts Posture Analysis MEMS Inertial Sensors Microelectromechanical systems Prediction algorithms Predictive models Safety Tracking Training |
| Title | A Data-Driven Framework for Postural Assessment in Combat Skill Instruction Using Embedded Inertial Micro-Sensing |
| URI | https://ieeexplore.ieee.org/document/11183104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZohRATIIp4y0isbt3EieMx9CE6UFVqh26VL7mgiJKWEvj9nNOXGBjYIseWFZ_PF9vffR9jj4kFiJRtizChGaySAAVAFgj0UgxtZNsY2EpsQg-H0XRqRptk9SoXBhEr8Bk23WN1l58uki93VNYiv3S6WKrGalqH62StI_aw4c1sdeLBUzcOaQ66wxIvaG7r_1JOqQJH_-SfXZ6yxj4Fj492weWMHWBxzj5i3rWlFd2VW6N4fwus4vTnyZ3sruPQ4PGObJPnBSeHB1vy8Vs-n_PBni-WV2AB3nsHpLUnpVcOYU3NXxxET4wdsL14bbBJvzfpPIuNZoLIjV_SRtBG2teJH0UGJQS-Vhkad91qVFtBolGBpzCSFjMDvpeSu_spSKoDXmitf8HqxaLAS8Y9mUnavhhjKYyH1pBJDQQQKomaIhxcsYYbrtlyzYox247U9R_lN-zYGcXBrDx5y-r0uXjHDpPvMv9c3Ve2_AF9cqJB |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIOAEiCJ2jMQ1res4i4-hi1rRVpXaQ2-VJ5miiJJCCXw_43QTBw7cIseWFY_HE9tv3mPsMTYAoTI1x49pBqvYQwdg6jkoE_RNaGromUJsIuj3w_FYD1bJ6kUuDCIW4DOs2MfiLj-Zx1_2qKxKfml1sdQu2_OUkmKZrnXAHlbMmdV61HlqRD7NQntcIr3KusUv7ZQidLSO_9npCStvk_D4YBNeTtkOZmfsI-INkxunsbCrFG-toVWc_j25Fd61LBo82tBt8jTj5PJgcj58TWcz3tkyxvICLsCbb4C0-iT0ymKsqXnPgvScoYW2Zy9lNmo1R_W2s1JNcFLt5rQVNGHgBrEbhhoFeG6gpqjthatWNQVxgAqkwlAYnGpwZUIO7yYgqA5I3xj3nJWyeYYXjEsxFbSB0dpQIPeNJqNq8MBXAgOKcXDJyna4Ju9LXozJeqSu_ii_Z4ftUa876Xb6z9fsyBrIgq6kuGEl-nS8Zfvxd55-Lu4Ku_4AHKuliA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+5th+International+Conference+on+Artificial+Intelligence%2C+Big+Data+and+Algorithms+%28CAIBDA%29&rft.atitle=A+Data-Driven+Framework+for+Postural+Assessment+in+Combat+Skill+Instruction+Using+Embedded+Inertial+Micro-Sensing&rft.au=Zeng%2C+Qin&rft.au=Liang%2C+Jie&rft.au=Song%2C+Guodong&rft.date=2025-06-20&rft.pub=IEEE&rft.spage=840&rft.epage=843&rft_id=info:doi/10.1109%2FCAIBDA65784.2025.11183104&rft.externalDocID=11183104 |