A Data-Driven Framework for Postural Assessment in Combat Skill Instruction Using Embedded Inertial Micro-Sensing

In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and injury prevention. With the evolution of micro-electromechanical systems (MEMS), wearable sensor arrays have become increasingly compact, ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 5th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA) S. 840 - 843
Hauptverfasser: Zeng, Qin, Liang, Jie, Song, Guodong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 20.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and injury prevention. With the evolution of micro-electromechanical systems (MEMS), wearable sensor arrays have become increasingly compact, efficient, and suitable for long-duration, unobtrusive motion tracking. In this study, a wearable lower-limb monitoring system is introduced, which integrates tri-axial inertial sensing modules comprising accelerometric, gyroscopic, and magnetometric units. To enhance the reliability of multi-modal kinematic signals, an adaptive fusion framework is constructed, incorporating quaternion-based orientation estimation and magnetic field calibration via ellipsoid compensation techniques. This system enables the extraction of joint kinematic parameters and supports the development of a comprehensive dataset tailored to martial arts biomechanics. Building upon this dataset, a regression-based predictive model is trained to quantify technical execution quality and estimate susceptibility to musculoskeletal strain. The resulting system facilitates decision-making in instructional contexts by offering interpretable, data-driven insights that inform skill refinement and safety interventions.
AbstractList In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and injury prevention. With the evolution of micro-electromechanical systems (MEMS), wearable sensor arrays have become increasingly compact, efficient, and suitable for long-duration, unobtrusive motion tracking. In this study, a wearable lower-limb monitoring system is introduced, which integrates tri-axial inertial sensing modules comprising accelerometric, gyroscopic, and magnetometric units. To enhance the reliability of multi-modal kinematic signals, an adaptive fusion framework is constructed, incorporating quaternion-based orientation estimation and magnetic field calibration via ellipsoid compensation techniques. This system enables the extraction of joint kinematic parameters and supports the development of a comprehensive dataset tailored to martial arts biomechanics. Building upon this dataset, a regression-based predictive model is trained to quantify technical execution quality and estimate susceptibility to musculoskeletal strain. The resulting system facilitates decision-making in instructional contexts by offering interpretable, data-driven insights that inform skill refinement and safety interventions.
Author Song, Guodong
Liang, Jie
Zeng, Qin
Author_xml – sequence: 1
  givenname: Qin
  surname: Zeng
  fullname: Zeng, Qin
  email: 457515840@qq.com
  organization: Officers College of PAP,Chengdu,China
– sequence: 2
  givenname: Jie
  surname: Liang
  fullname: Liang, Jie
  email: 774751854@qq.com
  organization: Officers College of PAP,Chengdu,China
– sequence: 3
  givenname: Guodong
  surname: Song
  fullname: Song, Guodong
  email: 549235322@qq.com
  organization: Officers College of PAP,Chengdu,China
BookMark eNo1kEtOwzAYhI0ECyi9AQtzgBS_EtvLkBaoVARSy7qykz_IamKD7YK4PUHAaqT5ZmYxF-jUBw8IXVOyoJTom6Ze3y7rqpRKLBhh5eRSxSkRJ2iupVac05JVlaDn6L3GS5NNsYzuAzy-i2aEzxAPuA8RP4eUj9EMuE4JUhrBZ-w8bsJoTcbbgxsGvPYpx2ObXfD4JTn_ilejha6DbkIQs5vqj66NodiC_-GX6Kw3Q4L5n87Q7m61ax6KzdP9uqk3hdM8FxU1SnLZcqU0EFtyKXrQpJJMCypsK0FYJkARA722nHWclLyzZMpYVhnDZ-jqd9YBwP4tutHEr_3_EfwbH15Zdg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAIBDA65784.2025.11183104
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331526641
EndPage 843
ExternalDocumentID 11183104
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-61a8737c3889e0b5374fe906729414bc7e4b24e80aef9b32d3053db0e90b26aa3
IEDL.DBID RIE
IngestDate Wed Oct 15 14:21:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-61a8737c3889e0b5374fe906729414bc7e4b24e80aef9b32d3053db0e90b26aa3
PageCount 4
ParticipantIDs ieee_primary_11183104
PublicationCentury 2000
PublicationDate 2025-June-20
PublicationDateYYYYMMDD 2025-06-20
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-20
  day: 20
PublicationDecade 2020
PublicationTitle 2025 5th International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA)
PublicationTitleAbbrev CAIBDA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.912433
Snippet In the domain of martial arts pedagogy and athletic conditioning, accurately capturing biomechanical movement patterns is vital for individualized feedback and...
SourceID ieee
SourceType Publisher
StartPage 840
SubjectTerms Biomechanics
Data Fusion Algorithms
Injuries
Injury Risk Prediction
Kinematics
Martial Arts Posture Analysis
MEMS Inertial Sensors
Microelectromechanical systems
Prediction algorithms
Predictive models
Safety
Tracking
Training
Title A Data-Driven Framework for Postural Assessment in Combat Skill Instruction Using Embedded Inertial Micro-Sensing
URI https://ieeexplore.ieee.org/document/11183104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6EGONJjRjfqYnXwtJ2t-1xBYkcJCRw4Eba7mA24qK4-vvtLK948OCt6SNNH9PZbb_5PkLuYw_B6USeBdcKTCqdMKM1MCQjN95YM3MrsQk1GOjJxAzXwepVLAwAVOAzaGKyesvPFv4Lr8pawS5RF0vWSE0ptQrWOiB3a97MViftP3TTJOxBvCzhcXNT_5dySuU4ekf_7PKYNHYheHS4dS4nZA-KU_KR0q4tLesu8YyivQ2wioYvT4qyu8ihQdMt2SbNCxoM3tmSjl7z-Zz2d3yxtAIL0Mc3B-HsyUIRIqxD82eE6LERAtuLlwYZ9x7HnSe21kxguRFl-BG0WgnlhdYGIhcLJWdg8LnVyLZ0XoF0XIKOLMyMEzwL5i4yF4U6jifWijNSLxYFnBMKLgtDt955jxQ8xrZdnEkb88RxaCtxQRo4XdP3FSvGdDNTl3_kX5FDXBSEWfHomtTDcOGG7PvvMv9c3lZr-QN_TqGr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4UjXpSI8bdmngtDG1n6XFkCUQgJHDgRtrOw0zEQXH099s3bPHgwVvTJU2X1zfTfu_7CHn0LTin41nmXCswGUYBU1EEDMnIlVVaTc1SbCLs96PxWA1WwepFLAwAFOAzqGCyeMtP5vYLr8qqzi5RF0vukj1fSl5bhmsdkIcVc2a1HneeGnHgdiFel3C_sm7xSzulcB2t4392ekLK2yA8Oti4l1OyA9kZ-YhpQ-eaNRZ4StHWGlpF3bcnReFdZNGg8YZuk6YZdSZvdE6Hr-lsRjtbxlhawAVo882AO30SV4QYa9e8hyA9NkRoe_ZSJqNWc1Rvs5VqAkuVyN2voI5CEVoRRQo844tQTkHhg6uSNWlsCNJwCZGnYaqM4IkzeJEYz9UxPNBanJNSNs_gglAwiRu6tsZaJOFRumb8RGqfB4ZDLRSXpIzTNXlf8mJM1jN19Uf-PTlsj3rdSbfTf74mR7hACLri3g0puaHDLdm333n6ubgr1vUHFFGk8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+5th+International+Conference+on+Artificial+Intelligence%2C+Big+Data+and+Algorithms+%28CAIBDA%29&rft.atitle=A+Data-Driven+Framework+for+Postural+Assessment+in+Combat+Skill+Instruction+Using+Embedded+Inertial+Micro-Sensing&rft.au=Zeng%2C+Qin&rft.au=Liang%2C+Jie&rft.au=Song%2C+Guodong&rft.date=2025-06-20&rft.pub=IEEE&rft.spage=840&rft.epage=843&rft_id=info:doi/10.1109%2FCAIBDA65784.2025.11183104&rft.externalDocID=11183104