Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
06.04.2025
|
| Schlagworte: | |
| ISSN: | 2379-190X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!