Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders

We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 1 - 5
Hauptverfasser: Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 06.04.2025
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!