Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
06.04.2025
|
| Schlagworte: | |
| ISSN: | 2379-190X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification. To enhance the model's adaptability to unseen subjects without extensive retraining, we introduce an attention-based adapter network for fine-tuning, which reduces the computational cost of adapting the model to new subjects. Our method significantly outperforms other deep learning approaches, achieving state-of-the-art results with a subject balanced accuracy of 89.81% on the ERP-Core dataset and 70.85% on the SleepEDFx-20 dataset. After subject adaptive fine-tuning using adapters and attention layers, GC-VASE further improves the subject balanced accuracy to 90.31% on ERP-Core. Additionally, we perform a detailed ablation study to highlight the impact of the key components of our method. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP49660.2025.10890073 |