Virtual Wind Tower Siting Method Based on Multi-Objective Mayfly Optimization Algorithm

This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (International Conference on Computer Engineering and Applications. Online) S. 656 - 659
Hauptverfasser: Duan, Junhong, Song, Jun, Niu, Wei, Zhang, Hailong, Tu, Chao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 25.04.2025
Schlagworte:
ISSN:2159-1288
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The M-MOA optimizes locations through power generation, revenue, and cost objectives. Experiments show the algorithm achieves higher annual profit than benchmark methods (GA, SA, MOA) while avoiding environmentally sensitive zones. Key innovations include population interaction mechanisms and terrain-adaptive cost Results validate the method's effectiveness for sustainable wind energy development.
ISSN:2159-1288
DOI:10.1109/ICCEA65460.2025.11103183