Boolean matrix compressed sensing
In real-world datasets, leveraging the low-rank and sparsity properties enables developing efficient algorithms across a diverse array of data-related tasks, including compression, compressed sensing, matrix completion, etc. Notably, these two properties often coexist in certain real-world datasets,...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.04.2025
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In real-world datasets, leveraging the low-rank and sparsity properties enables developing efficient algorithms across a diverse array of data-related tasks, including compression, compressed sensing, matrix completion, etc. Notably, these two properties often coexist in certain real-world datasets, especially in Boolean datasets and quantized real-valued datasets. To harness the advantages of low-rank and sparsity simultaneously, we adopt a technique inspired by compressed sensing and Boolean matrix completion. Our approach entails compressing a low-rank sparse Boolean matrix by performing inner product operations with a randomly generated Boolean matrix. We then propose a decoding algorithms based on message-passing techniques to recover the original matrix. Our experiments demonstrate superior recovery performance of our proposed algorithms compared to Boolean matrix completion, with equal measurement requirements. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP49660.2025.10888788 |