HPC-Driven Modeling with ML-Based Surrogates for Magnon-Photon Dynamics in Hybrid Quantum System
We introduce a hybrid computational framework that merges HPC-based numerical solvers with physics-informed ML surrogates for efficient modeling of magnon-photon interactions. By running short-duration, high-fidelity Maxwell-LLG simulations and feeding their results into an ML model, we substantiall...
Uložené v:
| Vydané v: | 2025 International Applied Computational Electromagnetics Society Symposium (ACES) s. 1 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Applied Computational Electromagnetics Society
18.05.2025
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We introduce a hybrid computational framework that merges HPC-based numerical solvers with physics-informed ML surrogates for efficient modeling of magnon-photon interactions. By running short-duration, high-fidelity Maxwell-LLG simulations and feeding their results into an ML model, we substantially cut simulation time while achieving accurate predictions across larger spatiotemporal domains. |
|---|---|
| DOI: | 10.23919/ACES66556.2025.11052493 |