HPC-Driven Modeling with ML-Based Surrogates for Magnon-Photon Dynamics in Hybrid Quantum System
We introduce a hybrid computational framework that merges HPC-based numerical solvers with physics-informed ML surrogates for efficient modeling of magnon-photon interactions. By running short-duration, high-fidelity Maxwell-LLG simulations and feeding their results into an ML model, we substantiall...
Uloženo v:
| Vydáno v: | 2025 International Applied Computational Electromagnetics Society Symposium (ACES) s. 1 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Applied Computational Electromagnetics Society
18.05.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce a hybrid computational framework that merges HPC-based numerical solvers with physics-informed ML surrogates for efficient modeling of magnon-photon interactions. By running short-duration, high-fidelity Maxwell-LLG simulations and feeding their results into an ML model, we substantially cut simulation time while achieving accurate predictions across larger spatiotemporal domains. |
|---|---|
| DOI: | 10.23919/ACES66556.2025.11052493 |