Research on Optimal Mission Planning for Satellite Swarm Configuration Change

This study addresses the challenges of mission allocation and real-time path planning for satellite swarms under strict fuel constraints and computational complexity limitations. By leveraging the Clohessy-Wiltshire (CW) guidance equations, a fuel consumption model is established to quantify propell...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control Conference s. 2214 - 2219
Hlavní autoři: Wu, Han, Feng, Haolong, Han, Fei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Technical Committee on Control Theory, Chinese Association of Automation 28.07.2025
Témata:
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study addresses the challenges of mission allocation and real-time path planning for satellite swarms under strict fuel constraints and computational complexity limitations. By leveraging the Clohessy-Wiltshire (CW) guidance equations, a fuel consumption model is established to quantify propellant expenditure, with optimization objectives targeting both total fuel minimization and fuel equity across the swarm. A particle swarm optimization (PSO) algorithm transforms task allocation into a constrained programming problem, enabling efficient resource distribution for long-term orbital services. To overcome the scalability limitations of centralized methods, a distributed sequential convex programming (SCP) framework is proposed, allowing individual spacecraft to autonomously compute fuel-optimal trajectories while rigorously satisfying orbital dynamics, collision avoidance, and fuel consumption constraints. This dual-layered approach reduces system-wide computational complexity by localizing optimization tasks, achieving the scalability for real-time operations in large-scale swarms, thereby advancing sustainable mission planning capabilities for next-generation space systems.
ISSN:1934-1768
DOI:10.23919/CCC64809.2025.11179178