Stochastic Scale Invariant Power Iteration for KL-divergence Nonnegative Matrix Factorization
We introduce a mini-batch stochastic variance-reduced algorithm to solve finite-sum scale invariant problems which cover several examples in machine learning and statistics such as principal component analysis (PCA) and estimation of mixture proportions. The algorithm is a stochastic generalization...
Saved in:
| Published in: | IEEE International Conference on Big Data pp. 969 - 977 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
15.12.2024
|
| Subjects: | |
| ISSN: | 2573-2978 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We introduce a mini-batch stochastic variance-reduced algorithm to solve finite-sum scale invariant problems which cover several examples in machine learning and statistics such as principal component analysis (PCA) and estimation of mixture proportions. The algorithm is a stochastic generalization of scale invariant power iteration, specializing to power iteration when full-batch is used for the PCA problem. In convergence analysis, we show the expectation of the optimality gap decreases at a linear rate under some conditions on the step size, epoch length, batch size and initial iterate. Numerical experiments on the non-negative factorization problem with the KullbackLeibler divergence using real and synthetic datasets demonstrate that the proposed stochastic approach not only converges faster than state-of-the-art deterministic algorithms but also produces excellent quality robust solutions. |
|---|---|
| ISSN: | 2573-2978 |
| DOI: | 10.1109/BigData62323.2024.10825312 |