On the Convergence of a Reinforcement Learning Process to a Generalized Energy-Optimal Guidance Policy for Unmanned Underwater Vehicles
We demonstrate that an energy-minimizing guid-ance system for unmanned underwater vehicles-trained by deep reinforcement learning (RL) on ocean current profiles exhibiting time-stationary random variation in direction and magnitude as a function of depth-executes a distance-conditional explore-explo...
Gespeichert in:
| Veröffentlicht in: | Oceans (New York. Online) S. 1 - 10 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
23.09.2024
|
| Schlagworte: | |
| ISSN: | 2996-1882 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!