Electroencephalograph-Based Hand Movement Pattern Recognition for Prosthetic Robot Control Using a Combination of Long Short-Term Memory and Stacked Autoencoder Methods
Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing the quality of life for people with disabilities, especially in optimizing prosthetic functions. This research proposes a method to control...
Saved in:
| Published in: | 2024 IEEE International Conference on Smart Mechatronics (ICSMech) pp. 225 - 229 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
19.11.2024
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing the quality of life for people with disabilities, especially in optimizing prosthetic functions. This research proposes a method to control a prosthetic hand robot using a combination of Long Short-Term Memory (LSTM) and Stacked Autoencoder (SAE) architecture based on EEG signals. Offline tests were conducted by adjusting various parameters on LSTM and SAE, achieving an average accuracy of 99.89% in single-subject training, indicating strong potential in functional hand motion pattern recognition. However, in cross-subject testing-where the model was tested on subjects other than those used in training-the performance significantly declined, with an average accuracy of 33.97%. |
|---|---|
| AbstractList | Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing the quality of life for people with disabilities, especially in optimizing prosthetic functions. This research proposes a method to control a prosthetic hand robot using a combination of Long Short-Term Memory (LSTM) and Stacked Autoencoder (SAE) architecture based on EEG signals. Offline tests were conducted by adjusting various parameters on LSTM and SAE, achieving an average accuracy of 99.89% in single-subject training, indicating strong potential in functional hand motion pattern recognition. However, in cross-subject testing-where the model was tested on subjects other than those used in training-the performance significantly declined, with an average accuracy of 33.97%. |
| Author | Hana Sasono, Muchamad Arif Akbar, Afgan Satrio Anam, Khairul Nanda Imron, Arizal Mujibtamala Fatoni, Moch. Rijal |
| Author_xml | – sequence: 1 givenname: Muchamad Arif surname: Hana Sasono fullname: Hana Sasono, Muchamad Arif email: arifhana04@gmail.com organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 2 givenname: Afgan Satrio surname: Akbar fullname: Akbar, Afgan Satrio email: afganstrr@gmail.com organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 3 givenname: Moch. Rijal surname: Fatoni fullname: Fatoni, Moch. Rijal email: rijalfatooni@gmail.com organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 4 givenname: Arizal Mujibtamala surname: Nanda Imron fullname: Nanda Imron, Arizal Mujibtamala email: arizal.tamala@unej.ac.id organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 5 givenname: Khairul surname: Anam fullname: Anam, Khairul email: khairul@unej.ac.id organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia |
| BookMark | eNo1UMtOwzAQNBIcoPQPOFjcU-w4D_tYokIrtaJqy7lynE1jkXgrxyD1j_qZpDxOOzujndndO3Lt0AEhj5xNOGfqaVFsV2CaLFYim8QsTiacSR4LIa7IWOVKipSJTCoub8l51oIJHsEZODa6xYPXxyZ61j1UdK5dRVf4BR24QNc6BPCObsDgwdlg0dEaPV177EMDwRq6wRIDLdANji197607UD30XWmd_hnAmi5xYLcN-hDtwHd0BR36E71kbYM2H0Pw9DNcNsIK_CCHBqv-ntzUuu1h_FdHZPcy2xXzaPn2uiimy8gqHqJc1VlSclVCxfMyT8rhamDAWA0yjQcEWaKUSLkQJuOyipUBzaVIJJNpmYEYkYdfWwsA-6O3nfan_f__xDeSN28h |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSMech62936.2024.10812333 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350368918 |
| EndPage | 229 |
| ExternalDocumentID | 10812333 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-79f64b19bed17b74b233e0e00fe852e0ee649935133c618d29cea18348085b6e3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 08 06:10:42 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-79f64b19bed17b74b233e0e00fe852e0ee649935133c618d29cea18348085b6e3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10812333 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov.-19 |
| PublicationDateYYYYMMDD | 2024-11-19 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE International Conference on Smart Mechatronics (ICSMech) |
| PublicationTitleAbbrev | ICSMECH |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8893102 |
| Snippet | Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 225 |
| SubjectTerms | Accuracy Autoencoders electroencephalograph Electroencephalography hand movement pattern recognition Hands Long short term memory Pattern recognition Reliability Robot control robotic prosthetic hand stacked autoencoder Testing Training |
| Title | Electroencephalograph-Based Hand Movement Pattern Recognition for Prosthetic Robot Control Using a Combination of Long Short-Term Memory and Stacked Autoencoder Methods |
| URI | https://ieeexplore.ieee.org/document/10812333 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6UePCkRoy_04PX4sq6dT0qgWAihAAHbqRrXwMHNwLDxP_IP9PXDjQePHjr2mzd2u691-373kfIg8hAGa1T5pxLmHAuYpkTliWphSwSjhtpg9iEHA6z2UyNdmT1wIUBgAA-g5Yvhn_5tjRb_6kM33B0R3EcH5JDKdOarLVLJMoj9fjSmQzALFL0YB580Bat_Qm_pFOC5-id_LPPU9L84eDR0bd3OSMHUJyTz26tWuNbVwu9yzfNntEVWdrXhaWDMiQAr-goJM4s6HiPECoLigGqv-YGgz5cL3Rc5mVFOzVYnQbwANV4_Ia75TBhtHT0tcTayQKjdDZFK04HHpr7QX1fGKiiDbD0aVv5O_KqatjsFak3TTLtdaedPttpLbCl4hWTyqUi5yoHy2UuRY6PDBFEkYMsaWMJUtwaxV4MxqQ8s21lQKM1EBmGbHkK8QVpFGUBl4SCjlxkPF_WcSF1nIERFgNJwxOdSKOuSNOP8nxVZ9OY7wf4-o_6G3Ls59Lz_7i6JY1qvYU7cmTeq-VmfR_WwBcfvrhc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cDqYjfOh0eoilrRVlXpwFY59lllIKnaFIl_xM_k7LYgBgY2x1bixHbuzsl79wi5lRkoo3XCnHMxk85xljlpWZxYyLh0wqQ2iE2kg0H28qKGa7J64MIAQACfQcMXw798W5ql_1SGbzi6oyiKtslOLGWTr-ha61Sigqu7buu5D2aaoA_z8IOmbGxO-SWeEnzH48E_ez0k9R8WHh1--5cjsgXFMflsr3RrfOtsqtcZp9kDOiNLO7qwtF-GFOAVHYbUmQUdbTBCZUExRPXXXGDYhyuGjsq8rGhrBVenAT5ANR6_4X45TBktHe2VWPs8xTidjdGO074H535Q3xeGqmgFLL1fVv6OvK4aNntN6kWdjB_b41aHrdUW2KsSFUuVS2QuVA5WpHkqc3xk4MC5gyxuYgkS3BxFXg7GJCKzTWVAoz2QGQZteQLRCakVZQGnhILmjhvPmHVCpjrKwEiLoaQRsY5To85I3Y_yZLbKpzHZDPD5H_U3ZK8z7vcmve7g6YLs-3n1bEChLkmtmi_hiuya9-p1Mb8O6-EL2-27ow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Smart+Mechatronics+%28ICSMech%29&rft.atitle=Electroencephalograph-Based+Hand+Movement+Pattern+Recognition+for+Prosthetic+Robot+Control+Using+a+Combination+of+Long+Short-Term+Memory+and+Stacked+Autoencoder+Methods&rft.au=Hana+Sasono%2C+Muchamad+Arif&rft.au=Akbar%2C+Afgan+Satrio&rft.au=Fatoni%2C+Moch.+Rijal&rft.au=Nanda+Imron%2C+Arizal+Mujibtamala&rft.date=2024-11-19&rft.pub=IEEE&rft.spage=225&rft.epage=229&rft_id=info:doi/10.1109%2FICSMech62936.2024.10812333&rft.externalDocID=10812333 |