A Hybrid Migratory Bird Optimization Algorithm for solving the Large-Scale Flow Shop Scheduling Problem

The flow-shop scheduling problem (FSP) is significant in modern industry, with increasing complexity and computation time as the scheduling scale grows. To address this, this paper integrates the Migratory Bird Optimization (MBO) algorithm with the Simulated Annealing (SA) algorithm. This hybrid app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Automation Congress (Online) S. 6232 - 6237
Hauptverfasser: Yang, Zonglin, Li, Shaoyuan, Yin, Xiaohong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2024
Schlagworte:
ISSN:2688-0938
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flow-shop scheduling problem (FSP) is significant in modern industry, with increasing complexity and computation time as the scheduling scale grows. To address this, this paper integrates the Migratory Bird Optimization (MBO) algorithm with the Simulated Annealing (SA) algorithm. This hybrid approach leverages MBO's robust global search and SA's effectiveness in avoiding local optima. The hybrid MBO algorithm aims to minimize makespan, supporting automated, intelligent, and unmanned production in core workshops. Parts of the Taillard benchmark are used to verify the proposed SAMBO algorithm's performance, comparing it with the memetic and hybrid genetic algorithms. Experimental results show that SAMBO better saves processing time.
ISSN:2688-0938
DOI:10.1109/CAC63892.2024.10864756