TWEN: EEG Emotion Recognition Model Based on Weakly Supervised Learning Framework with Two-Phase Multitask Autoencoder

Emotions significantly influence human cognition, behavior, and social interactions, making accurate recognition essential in Human-Computer Interaction (HCI) applications. This study addresses challenges in EEG-based emotion recognition, particularly inter-subject variability and label noise, which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Information and Communication Technology Convergence (Print) s. 1494 - 1498
Hlavní autori: Kim, Taewan, Jin, ChangGyun, Kim, Seong-Eun
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 16.10.2024
Predmet:
ISSN:2162-1241
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Emotions significantly influence human cognition, behavior, and social interactions, making accurate recognition essential in Human-Computer Interaction (HCI) applications. This study addresses challenges in EEG-based emotion recognition, particularly inter-subject variability and label noise, which hinder the development of robust and generalized models. We propose a robust Two-phase Weakly Supervised Emotion Network (TWEN), a novel deep learning model designed to enhance emotion recognition. TWEN incorporates a Two-phase Multitask Autoencoder to mitigate inter-subject variability and a Top-k Selection method to reduce label noise. The model captures both local and global temporal features of EEG signals through an innovative fusion of attention mechanisms, ensuring accurate classification of emotions over varying durations. Evaluations on the THU-EP dataset demonstrate that TWEN outperforms state-of-the-art models, achieving a classification accuracy of 60.8%, with a standard deviation of 4.07%.
ISSN:2162-1241
DOI:10.1109/ICTC62082.2024.10827151