Preserving Speaker Identity in Speech-to-Speech Translation: An Exploration of Attention-Based Approaches

Effective speech-to-speech translation (STST) requires not only accurate linguistic conversion but also preservation of the speaker's unique vocal identity. The paper research investigates the efficacy of attention-based encoder-decoder architectures in achieving this goal. The impact of incorp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Computing Communication Control and Automation (Online) s. 1 - 6
Hlavní autori: Jaybhaye, S. M, Lale, Yogesh, Kulkarni, Parth, Diwnale, Tanvi, Kota, Apurva
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 23.08.2024
Predmet:
ISSN:2771-1358
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Effective speech-to-speech translation (STST) requires not only accurate linguistic conversion but also preservation of the speaker's unique vocal identity. The paper research investigates the efficacy of attention-based encoder-decoder architectures in achieving this goal. The impact of incorporating speaker embeddings through various attention mechanisms is explored, including speaker-aware self-attention, cross-attention with speaker embeddings, and a dedicated speaker attention module within the decoder. Utilizing the CVSS multilingual dataset. The approach is rigorously evaluated through objective metrics (BLEU, WER, speaker recognition accuracy, cosine similarity, FID) and subjective human perception studies. The results demonstrates that dedicated speaker attention and cross-attention mechanisms within the decoder significantly enhance speaker identity preservation without compromising translation accuracy. These results pave the way for the development of STST systems that deliver both accurate content and natural, personalized communication experiences.
ISSN:2771-1358
DOI:10.1109/ICCUBEA61740.2024.10774862