Dynamic Target Pursuit by Multi-UAV Under Communication Coverage: ACO-MATD3 Approach

This study proposes a new approach for cooperative pursuit of dynamic targets under communication coverage involving multi-unmanned aerial vehicles (UAVs). This approach combines the ant colony optimization algorithm with the multiagent twin delay deep deterministic policy gradient, called ACOMATD3....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Information Science and Technology s. 427 - 431
Hlavní autori: Cao, Zhuang, Wu, Di
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.12.2024
Predmet:
ISSN:2573-3311
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study proposes a new approach for cooperative pursuit of dynamic targets under communication coverage involving multi-unmanned aerial vehicles (UAVs). This approach combines the ant colony optimization algorithm with the multiagent twin delay deep deterministic policy gradient, called ACOMATD3. The ACO-MATD3 algorithm dynamically adjusts hyperparameters based on varying stages and requirements, greatly enhancing the stability and performance of cooperative multiUAV pursuit tasks, especially under strong communication coverage. Experimental results demonstrate that the ACO-MATD3 algorithm significantly outperforms other algorithms in terms of mean reward and communication return.
ISSN:2573-3311
DOI:10.1109/ICIST63249.2024.10805354