Modular dynamic deep denoising autoencoder for speech enhancement
Deep Denoising Autoencoder (DDAE) is an effective method for noise reduction and speech enhancement. However, a single DDAE with a fixed number of frames for neural network input cannot extract contextual information sufficiently. It has also less generalization in unknown SNRs (signal-to-noise-rati...
Uložené v:
| Vydané v: | 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE) s. 254 - 259 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2017
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Deep Denoising Autoencoder (DDAE) is an effective method for noise reduction and speech enhancement. However, a single DDAE with a fixed number of frames for neural network input cannot extract contextual information sufficiently. It has also less generalization in unknown SNRs (signal-to-noise-ratio) and the enhanced output has some residual noise. In this paper, we use a modular model in which three DDAEs with different window lengths are stacked. Experimental results showes that our proposed architecture, namely modular dynamic deep denoising autoencoder (MD-DDAE) provides superior performance in comparison with the traditional DDAE models in different noisy conditions. |
|---|---|
| DOI: | 10.1109/ICCKE.2017.8167886 |