Reducing Energy Consumption of Dense Linear Algebra Operations on Hybrid CPU-GPU Platforms

We investigate the balance between the time-to-solution and the energy consumption of a task-parallel execution of the Cholesky and LU factorizations on a hybrid platform, equipped with a multi-core processor and several GPUs. To improve energy efficiency, we incorporate two energy-saving techniques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications S. 56 - 62
Hauptverfasser: Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., Quintana-Orti, E. S.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2012
Schlagworte:
ISBN:1467316318, 9781467316316
ISSN:2158-9178
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate the balance between the time-to-solution and the energy consumption of a task-parallel execution of the Cholesky and LU factorizations on a hybrid platform, equipped with a multi-core processor and several GPUs. To improve energy efficiency, we incorporate two energy-saving techniques in the runtime in charge of scheduling the computations, to block idle threads and enable the transition to a more energy-friendly state of the general-purpose cores. Experiments on an Intel Xeon-based platform connected to an NVIDIA Tesla server report an average reduction of the energy consumption close to 9% (38% when only the consumption associated with the application is considered), for a minor increase in the execution time of the algorithm.
AbstractList We investigate the balance between the time-to-solution and the energy consumption of a task-parallel execution of the Cholesky and LU factorizations on a hybrid platform, equipped with a multi-core processor and several GPUs. To improve energy efficiency, we incorporate two energy-saving techniques in the runtime in charge of scheduling the computations, to block idle threads and enable the transition to a more energy-friendly state of the general-purpose cores. Experiments on an Intel Xeon-based platform connected to an NVIDIA Tesla server report an average reduction of the energy consumption close to 9% (38% when only the consumption associated with the application is considered), for a minor increase in the execution time of the algorithm.
Author Quintana-Orti, E. S.
Mayo, R.
Alonso, P.
Igual, F. D.
Dolz, M. F.
Author_xml – sequence: 1
  givenname: P.
  surname: Alonso
  fullname: Alonso, P.
  email: palonso@dsic.upv.es
  organization: Depto. de Sist. Informaticos y Comput., Univ. Politec. de Valencia, Valencia, Spain
– sequence: 2
  givenname: M. F.
  surname: Dolz
  fullname: Dolz, M. F.
  email: dolzm@icc.uji.es
  organization: Depto. de Ing. y Cienc. de Comput., Univ. Jaume I, Castellon, Spain
– sequence: 3
  givenname: F. D.
  surname: Igual
  fullname: Igual, F. D.
  email: figual@icc.uji.es
  organization: Depto. de Ing. y Cienc. de Comput., Univ. Jaume I, Castellon, Spain
– sequence: 4
  givenname: R.
  surname: Mayo
  fullname: Mayo, R.
  email: mayo@icc.uji.es
  organization: Depto. de Ing. y Cienc. de Comput., Univ. Jaume I, Castellon, Spain
– sequence: 5
  givenname: E. S.
  surname: Quintana-Orti
  fullname: Quintana-Orti, E. S.
  email: quintana@icc.uji.es
  organization: Depto. de Ing. y Cienc. de Comput., Univ. Jaume I, Castellon, Spain
BookMark eNotjE9PwjAcQGvEREBu3rz0Cwz7a9d_RzIRSEhYFC5eSLv9RmpGRzo48O3F6OklLy9vRAaxi0jIM7ApALOvq89yNuUM-BTUHZlYbZhWVuaagbwnI8iVFqAEmAEZcpAms6DNI5n0_Tdj7OaNtWxIvj6wvlQhHug8YjpcadHF_nI8nUMXadfQN4w90nWI6BKdtQf0ydHNCZP7LXp6q5ZXn0JNi3KXLcodLVt3brp07J_IQ-PaHif_HJPt-3xbLLP1ZrEqZussWHbOGlFZgXktaoFgJBguoWKVqg0HJ503TFiwuW-E9N6BF86p3AuFTlaNtlqMycvfNiDi_pTC0aXrXnHDuJbiB2QLVXc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA.2012.16
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769547015
076954701X
EndPage 62
ExternalDocumentID 6280275
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-f3c93e4d3d3e18518251c0c6d821a5ab8039194bf35bba1b3aa64b36ea5cf7973
IEDL.DBID RIE
ISBN 1467316318
9781467316316
ISSN 2158-9178
IngestDate Wed Aug 27 04:58:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f3c93e4d3d3e18518251c0c6d821a5ab8039194bf35bba1b3aa64b36ea5cf7973
PageCount 7
ParticipantIDs ieee_primary_6280275
PublicationCentury 2000
PublicationDate 2012-July
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications
PublicationTitleAbbrev ispa
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188990
ssj0002672344
Score 1.5479786
Snippet We investigate the balance between the time-to-solution and the energy consumption of a task-parallel execution of the Cholesky and LU factorizations on a...
SourceID ieee
SourceType Publisher
StartPage 56
SubjectTerms dense linear algebra
Energy consumption
Energy-aware algorithms
Graphics processing unit
graphics processors
high performance computing
Kernel
Linear algebra
multi-core processors
Multicore processing
Runtime
Title Reducing Energy Consumption of Dense Linear Algebra Operations on Hybrid CPU-GPU Platforms
URI https://ieeexplore.ieee.org/document/6280275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4A8eAJFYzv7MGjBbrb7uNIEMTEYKNgiBey224NCQECxcR_7862VA9evHW3e2imM_06j28GoVuiLIZAwj1kaeBZ_0t6WqfaI4F1nkWije966b098dFITKcyqqC7kgtjjHHFZ6YFly6Xn6ziHYTK2owIyLJVUZVzlnO1yngKYZzQAqpgbXXVuhIQYrGgBjbNheN1MRjVZG_u2z0Va1YWxcv242vUhaIv0oIp6L-GrjjMGdT_97RHqPlD3sNRCUvHqGKWJ6i-n96AC2NuoPcX6Npqj-C-4__hnmNjuk8IXqX43jq4Bltf1doC7i4-IMOMn9cmV5kttqeGX8D3wr1o4j1EExwtVAb_wNsmGg_6497QKyYteHPZybyUxpKaIKEJNRa_faCzxp2YJYL4KlRaQBt5GeiUhlorX1OlWKApMyqMUy45PUW15WppzhBWQayFz4jRIQtkKqGfnxWlttvaFyY5Rw2Q1Gyd99KYFUK6-Hv7Eh3Ce8jLY69QLdvszDU6iD-z-XZz4xTgG9QPqVI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QTfSECsZve_DogLVb1x4JghARFwVDvJB26wwJAQLDxP_evjKmBy_e1q6H5e29vb2P3_shdEuk8SFQcPdZ4jkm_hKOUolyiGeCZx4r7dpZem-9oN_no5EIC-gux8JorW3zma7Cpa3lx_NoDamyGiMcqmw7aBeYszK0Vp5RISwgNHNWsDbaaoIJSLIYtwZWHXCL7GJA1mRubgc-ZWuWt8WLWvc1bEDbF6kCD_ov2hXrddql_z3vIar8wPdwmDumI1TQs2NU2vI34Mycy-j9Bea2miO4ZRGAuGnxmPYjgucJvjchrsYmWjXWgBvTD6gx4-eF3ijNCptTnS9AfOFmOHQewiEOpzKFv-BVBQ3arUGz42RcC85E1FMnoZGg2otpTLXx4C4AWqN6xGJOXOlLxWGQvPBUQn2lpKuolMxTlGnpR0kgAnqCirP5TJ8iLL1IcZcRrXzmiUTARD8jSmW2lct1fIbKIKnxYjNNY5wJ6fzv7Ru03xk89ca9bv_xAh3AO9k0y16iYrpc6yu0F32mk9Xy2irDN9wUrJs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+10th+International+Symposium+on+Parallel+and+Distributed+Processing+with+Applications&rft.atitle=Reducing+Energy+Consumption+of+Dense+Linear+Algebra+Operations+on+Hybrid+CPU-GPU+Platforms&rft.au=Alonso%2C+P.&rft.au=Dolz%2C+M.+F.&rft.au=Igual%2C+F.+D.&rft.au=Mayo%2C+R.&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=1467316318&rft.issn=2158-9178&rft.spage=56&rft.epage=62&rft_id=info:doi/10.1109%2FISPA.2012.16&rft.externalDocID=6280275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-9178&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-9178&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-9178&client=summon