Reducing Energy Consumption of Dense Linear Algebra Operations on Hybrid CPU-GPU Platforms
We investigate the balance between the time-to-solution and the energy consumption of a task-parallel execution of the Cholesky and LU factorizations on a hybrid platform, equipped with a multi-core processor and several GPUs. To improve energy efficiency, we incorporate two energy-saving techniques...
Uložené v:
| Vydané v: | 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications s. 56 - 62 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2012
|
| Predmet: | |
| ISBN: | 1467316318, 9781467316316 |
| ISSN: | 2158-9178 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We investigate the balance between the time-to-solution and the energy consumption of a task-parallel execution of the Cholesky and LU factorizations on a hybrid platform, equipped with a multi-core processor and several GPUs. To improve energy efficiency, we incorporate two energy-saving techniques in the runtime in charge of scheduling the computations, to block idle threads and enable the transition to a more energy-friendly state of the general-purpose cores. Experiments on an Intel Xeon-based platform connected to an NVIDIA Tesla server report an average reduction of the energy consumption close to 9% (38% when only the consumption associated with the application is considered), for a minor increase in the execution time of the algorithm. |
|---|---|
| ISBN: | 1467316318 9781467316316 |
| ISSN: | 2158-9178 |
| DOI: | 10.1109/ISPA.2012.16 |

