A modified fuzzy c-regression model clustering algorithm for T-S fuzzy model identification
In this paper, a modified fuzzy c-regression model (FCRM) clustering algorithm for identification of Takagi-Sugeno (T-S) fuzzy model is proposed. The FCRM clustering algorithm has considerable sensitive to noise. To overcome this problem, a modified FCRM clustering algorithm is presented. This latte...
Uloženo v:
| Vydáno v: | 2011 8th International Multi-Conference on Systems, Signals and Devices s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2011
|
| Témata: | |
| ISBN: | 9781457704130, 1457704137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a modified fuzzy c-regression model (FCRM) clustering algorithm for identification of Takagi-Sugeno (T-S) fuzzy model is proposed. The FCRM clustering algorithm has considerable sensitive to noise. To overcome this problem, a modified FCRM clustering algorithm is presented. This latter is based to adding a second regularization term in the alternative optimization process of FCRM. This regularization term is introduce in objective function in order to take in account the data are noisy. The parameters of the local linear models are identified based on orthogonal least squares (OLS). The proposed approach is demonstrated by means of the identification of nonlinear numerical examples. |
|---|---|
| ISBN: | 9781457704130 1457704137 |
| DOI: | 10.1109/SSD.2011.5767365 |

