Dense correspondence finding for parametrization-free animation reconstruction from video

We present a dense 3D correspondence finding method that enables spatio-temporally coherent reconstruction of surface animations from multi-view video data. Given as input a sequence of shape-from-silhouette volumes of a moving subject that were reconstructed for each time frame individually, our me...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 IEEE Conference on Computer Vision and Pattern Recognition s. 1 - 8
Hlavní autoři: Ahmed, N., Theobalt, C., Rossl, C., Thrun, S., Seidel, H.-P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2008
Témata:
ISBN:9781424422425, 1424422426
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a dense 3D correspondence finding method that enables spatio-temporally coherent reconstruction of surface animations from multi-view video data. Given as input a sequence of shape-from-silhouette volumes of a moving subject that were reconstructed for each time frame individually, our method establishes dense surface correspondences between subsequent shapes independently of surface discretization. This is achieved in two steps: first, we obtain sparse correspondences from robust optical features between adjacent frames. Second, we generate dense correspondences which serve as map between respective surfaces. By applying this procedure subsequently to all pairs of time steps we can trivially align one shape with all others. Thus, the original input can be reconstructed as a sequence of meshes with constant connectivity and small tangential distortion. We exemplify the performance and accuracy of our method using several synthetic and captured real-world sequences.
ISBN:9781424422425
1424422426
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2008.4587758