Demonstrating the power of object-oriented genetic programming via the inference of graph models for complex networks
Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this drawback, object-oriented GP (OOGP) introduced a means of evolving programs with multiple behaviours which could be easily extended to state-bas...
Uložené v:
| Vydané v: | 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014) s. 305 - 311 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2014
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this drawback, object-oriented GP (OOGP) introduced a means of evolving programs with multiple behaviours which could be easily extended to state-based programs. However, the production of programs which allowed embedded knowledge and produced readable code was still not easily addressed using the OOGP methodology. Exemplified through the evolution of graph models for complex networks, this paper demonstrates the benefits of a new approach to OOGP inspired by abstract classes and linear GP. Furthermore, the new approach to OOGP, named LinkableGP, facilitates the embedding of expert knowledge while also maintaining the benefits of OOGP. |
|---|---|
| AbstractList | Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this drawback, object-oriented GP (OOGP) introduced a means of evolving programs with multiple behaviours which could be easily extended to state-based programs. However, the production of programs which allowed embedded knowledge and produced readable code was still not easily addressed using the OOGP methodology. Exemplified through the evolution of graph models for complex networks, this paper demonstrates the benefits of a new approach to OOGP inspired by abstract classes and linear GP. Furthermore, the new approach to OOGP, named LinkableGP, facilitates the embedding of expert knowledge while also maintaining the benefits of OOGP. |
| Author | Medland, Michael Richard Harrison, Kyle Robert Ombuki-Berman, Beatrice M. |
| Author_xml | – sequence: 1 givenname: Michael Richard surname: Medland fullname: Medland, Michael Richard email: mm08sj@brocku.ca organization: Dept. of Comput. Sci., Brock Univ., St. Catharines, ON, Canada – sequence: 2 givenname: Kyle Robert surname: Harrison fullname: Harrison, Kyle Robert email: kh08uh@brocku.ca organization: Dept. of Comput. Sci., Brock Univ., St. Catharines, ON, Canada – sequence: 3 givenname: Beatrice M. surname: Ombuki-Berman fullname: Ombuki-Berman, Beatrice M. email: bombuki@brocku.ca organization: Dept. of Comput. Sci., Brock Univ., St. Catharines, ON, Canada |
| BookMark | eNot0EFOwzAQBVAjwQJKLwAbXyAhjp04s4QApVIFm-4rxxmnhsSOHEPh9qRQaaS_-Hp_MVfk3HmHhNywLGUsg7tX9bCu0zxjIi0hZxWUZ2QJsmJCAhTAZX5JPh9x8G6KQUXrOhr3SEd_wEC9ob55Rx0THyy6iC3t0GG0mo7Bd0ENwxF8WfWHrDMY0Gk8wrkd93TwLfYTNT5Q7Yexx286-4MPH9M1uTCqn3B5ygXZPj9t65dk87Za1_ebxEIWEyy4hKaYzwBwZoQSvNCAjDXAS4k5KsZ5q0uUOhdtwUXFNINCGINVVbZ8QW7_Zy0i7sZgBxV-dqdf8F8h9Vsl |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/NaBIC.2014.6921896 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781479959372 1479959375 9781479959365 1479959367 |
| EndPage | 311 |
| ExternalDocumentID | 6921896 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-e5379b59b5f9931f4a435c9e11b9367e2ea133dc6e7c24d53481c1954ffe886d3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:36:48 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-e5379b59b5f9931f4a435c9e11b9367e2ea133dc6e7c24d53481c1954ffe886d3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_6921896 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-July |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014) |
| PublicationTitleAbbrev | NaBIC |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.5632302 |
| Snippet | Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 305 |
| SubjectTerms | biologically inspired algorithms complex networks Computational modeling evolutionary computation genetic programming Genetics object-orientation Programming |
| Title | Demonstrating the power of object-oriented genetic programming via the inference of graph models for complex networks |
| URI | https://ieeexplore.ieee.org/document/6921896 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioEJUIv4lgdG3NZJbMcrhQqWqEOHblVin1GGJlW_xM_H54QiJBakDFGUiyVflHt23rtHyKNIeZIDCGb8t58l2sSsiBxnHtsLUxSxiBMbzCZUlqWLhZ51yNNRCwMAgXwGQzwN__Jtbfa4VTaS2hckLbukq5RstFrfOpixHmX58_sEyVrJsL3xl2NKKBjTs_8NdU4GP8o7OjvWlAvSgapP9i-wQhiHyao-qIdsdI3mZrR2tC5wI4XV2K7Yg0fq3weUJdKWd7XCgEOZh6DyOIQPDJ2qaTDC2VKPXGkgl8MnrRpi-HZA5tPX-eSNtXYJrNTjHQMRK10IfziPObhLco-EjAbOCx1LBRHkfj1qjQRlosQKVOAa7PfmHKSptPEl6VV1BVeEeszHuS60Xyqm-JjUyjhxWuU2crlT6pr0ccaW66YhxrKdrJu_L9-SU0xKw3G9I73dZg_35MQcduV28xCy-AVh3aJ6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggQToBbxjQdG3NaJncQrhaoVJerQoVuVOGeUoUnVL_HzsZ1QhMSClCGKcrHki3LPznv3AB5FxHiCKKgy337KpfJp6mlGDbYXKk194fPMmU2EcRzNZnLSgKe9FgYRHfkMO_bU_cvPSrW1W2XdQJqCJIMDOBSce71KrfWthOnJbpw8j_qWrsU79a2_PFNcyRic_m-wM2j_aO_IZF9VzqGBRQu2L7iwQM6mq_ggBrSRpbU3I6UmZWq3UmhpGxYb-EjMG2GFiaRmXi1swC5PXFC-H8IEul7VxFnhrInBrsTRy_GTFBU1fN2G6eB12h_S2jCB5rK3oSj8UKbCHNqgDqZ5YrCQkshYKv0gRA8TsyLNVICh8ngmrAZX2Y5vWmMUBZl_Ac2iLPASiEF9jMlUmsViZB8TZYHPtQyTzNOJDsMraNkZmy-rlhjzerKu_778AMfD6ft4Ph7FbzdwYhNUMV5voblZbfEOjtRuk69X9y6jX_7TpcE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Sixth+World+Congress+on+Nature+and+Biologically+Inspired+Computing+%28NaBIC+2014%29&rft.atitle=Demonstrating+the+power+of+object-oriented+genetic+programming+via+the+inference+of+graph+models+for+complex+networks&rft.au=Medland%2C+Michael+Richard&rft.au=Harrison%2C+Kyle+Robert&rft.au=Ombuki-Berman%2C+Beatrice+M.&rft.date=2014-07-01&rft.pub=IEEE&rft.spage=305&rft.epage=311&rft_id=info:doi/10.1109%2FNaBIC.2014.6921896&rft.externalDocID=6921896 |