Web log cleaning for mining of web usage patterns

Web usage mining (WUM) is a type of Web mining, which exploits data mining techniques to extract valuable information from navigation behavior of World Wide Web users. The data should be preprocessed to improve the efficiency and ease of the mining process. So it is important to define before applyi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2011 3rd International Conference on Computer Research and Development Ročník 2; s. 490 - 494
Hlavný autor: Aye, T T
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2011
Predmet:
ISBN:1612848397, 9781612848396
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Web usage mining (WUM) is a type of Web mining, which exploits data mining techniques to extract valuable information from navigation behavior of World Wide Web users. The data should be preprocessed to improve the efficiency and ease of the mining process. So it is important to define before applying data mining techniques to discover user access patterns from Web log. The main task of data preprocessing is to prune noisy and irrelevant data, and to reduce data volume for the pattern discovery phase. This paper mainly focus on data preprocessing stage of the first phase of Web usage mining with activities like field extraction and data cleaning algorithms. Field extraction algorithm performs the process of separating fields from the single line of the log file. Data cleaning algorithm eliminates inconsistent or unnecessary items in the analyzed data.
ISBN:1612848397
9781612848396
DOI:10.1109/ICCRD.2011.5764181