Apply anomaly grey forecasting algorithm to cyberspace situation prediction

In recent years, much research has been devoted to the cyberspace situation awareness; nevertheless, few have investigated the case that the network traffic data collected may include missing values and sufficient network traffic data may not be acquired for privacy protection or the limitation of n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2008 IEEE Conference on Cybernetics and Intelligent Systems s. 503 - 505
Hlavní autori: Weisong He, Guangmin Hu, Hongmei Xiang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2008
Predmet:
ISBN:1424416736, 9781424416738
ISSN:2326-8123
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In recent years, much research has been devoted to the cyberspace situation awareness; nevertheless, few have investigated the case that the network traffic data collected may include missing values and sufficient network traffic data may not be acquired for privacy protection or the limitation of network storage equipment capacity. Our focus in this position paper is on introducing an anomaly grey forecasting (AGF) method for cyberspace situation prediction under less data little sample, and the experiment with Abilene network Netflow data verify this method.
ISBN:1424416736
9781424416738
ISSN:2326-8123
DOI:10.1109/ICCIS.2008.4670842