Apply anomaly grey forecasting algorithm to cyberspace situation prediction
In recent years, much research has been devoted to the cyberspace situation awareness; nevertheless, few have investigated the case that the network traffic data collected may include missing values and sufficient network traffic data may not be acquired for privacy protection or the limitation of n...
Uloženo v:
| Vydáno v: | 2008 IEEE Conference on Cybernetics and Intelligent Systems s. 503 - 505 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2008
|
| Témata: | |
| ISBN: | 1424416736, 9781424416738 |
| ISSN: | 2326-8123 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In recent years, much research has been devoted to the cyberspace situation awareness; nevertheless, few have investigated the case that the network traffic data collected may include missing values and sufficient network traffic data may not be acquired for privacy protection or the limitation of network storage equipment capacity. Our focus in this position paper is on introducing an anomaly grey forecasting (AGF) method for cyberspace situation prediction under less data little sample, and the experiment with Abilene network Netflow data verify this method. |
|---|---|
| ISBN: | 1424416736 9781424416738 |
| ISSN: | 2326-8123 |
| DOI: | 10.1109/ICCIS.2008.4670842 |

