Fast hog feature computation based on CUDA

Histogram of oriented gradients (HOG) is one of the most popular descriptors used for pedestrian detection, but this descriptor has its own drawback. Like most sliding window algorithms it is very slow, making it unsuitable for many real-time applications. This paper proposes a parallel implementati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE International Conference on Computer Science and Automation Engineering Ročník 4; s. 748 - 751
Hlavní autoři: Chen Yan-ping, Li Shao-zi, Lin Xian-ming
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2011
Témata:
ISBN:9781424487271, 1424487277
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Histogram of oriented gradients (HOG) is one of the most popular descriptors used for pedestrian detection, but this descriptor has its own drawback. Like most sliding window algorithms it is very slow, making it unsuitable for many real-time applications. This paper proposes a parallel implementation of the HOG algorithm. It bases on CUDA (compute unified device architecture) platform that could use parallel computing of graphic processing unit (GPU). The time consumption of HOG running on the GPU and on the CPU is compared by experiments in this paper. The results demonstrate that the HOG on GPU performs better than the HOG running on CPU, and is approximate 10 times speedup.
ISBN:9781424487271
1424487277
DOI:10.1109/CSAE.2011.5952952