Fast hog feature computation based on CUDA

Histogram of oriented gradients (HOG) is one of the most popular descriptors used for pedestrian detection, but this descriptor has its own drawback. Like most sliding window algorithms it is very slow, making it unsuitable for many real-time applications. This paper proposes a parallel implementati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2011 IEEE International Conference on Computer Science and Automation Engineering Ročník 4; s. 748 - 751
Hlavní autori: Chen Yan-ping, Li Shao-zi, Lin Xian-ming
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2011
Predmet:
ISBN:9781424487271, 1424487277
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Histogram of oriented gradients (HOG) is one of the most popular descriptors used for pedestrian detection, but this descriptor has its own drawback. Like most sliding window algorithms it is very slow, making it unsuitable for many real-time applications. This paper proposes a parallel implementation of the HOG algorithm. It bases on CUDA (compute unified device architecture) platform that could use parallel computing of graphic processing unit (GPU). The time consumption of HOG running on the GPU and on the CPU is compared by experiments in this paper. The results demonstrate that the HOG on GPU performs better than the HOG running on CPU, and is approximate 10 times speedup.
ISBN:9781424487271
1424487277
DOI:10.1109/CSAE.2011.5952952