Toward Automatic Data Distribution for Migrating Computations

Program parallelization requires mapping computation and data to processing elements. Navigational programming (NavP), based on the principle of migrating computations, offers a different approach than the conventional solutions that use a SPMD model. This paper focuses on data distribution for NavP...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the International Conference on Parallel Processing s. 27
Hlavní autoři: Lei Pan, Jingling Xue, Ming Kin Lai
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2007
Témata:
ISSN:0190-3918
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Program parallelization requires mapping computation and data to processing elements. Navigational programming (NavP), based on the principle of migrating computations, offers a different approach than the conventional solutions that use a SPMD model. This paper focuses on data distribution for NavP. We introduce the navigational trace graph (NTG), a mathematical structure that captures the alignment and distribution preferences of a sequential program. Graph partitioning is applied to NTGs to obtain data distribution solutions. The major advantage is that our methodology can focus exclusively on reducing communication overhead first and later determine the actual computation partition and parallelization, because NavP computations migrate freely across partitions. This is in stark contrast to SPMD, where the data partitioning imposes hard constraints on the threads because they are stationary. We present experimental results to demonstrate the effectiveness of our approach.
ISSN:0190-3918
DOI:10.1109/ICPP.2007.80