Optimal design of a parallel Hybrid Electric Vehicle using multi-objective genetic algorithms

Hybrid Electric Vehicles (HEVs) provide fairly high fuel economy with lower emissions compared to conventional vehicles. To enhance HEV performance in terms of fuel economy and emissions, subject to the satisfaction of driving performance, optimal powertrain component sizing is inevitable. This pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 IEEE Vehicle Power and Propulsion Conference S. 871 - 876
Hauptverfasser: Desai, C., Williamson, S.S.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2009
Schlagworte:
ISBN:9781424426003, 1424426006
ISSN:1938-8756
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid Electric Vehicles (HEVs) provide fairly high fuel economy with lower emissions compared to conventional vehicles. To enhance HEV performance in terms of fuel economy and emissions, subject to the satisfaction of driving performance, optimal powertrain component sizing is inevitable. This paper presents an efficient multi-objective genetic algorithm (MOGA), to optimize powertrain component sizes as well as fuel economy and emissions, including HC, CO, and NOx, for a parallel HEV. The main target is to find the trade-off solutions, known as pareto-optimal set, from among the objectives. Simulation results show the potential of the proposed optimization technique in terms of improved fuel economy and low emissions.
ISBN:9781424426003
1424426006
ISSN:1938-8756
DOI:10.1109/VPPC.2009.5289754