Dynamic Particle Swarm Optimization Algorithm for Resolution of Overlapping Chromatograms

Dynamic particle swarm optimization algorithm is proposed in this paper to resolve overlapping chromatographic peaks. To accelerate the convergence speed, clustering degree and evolution velocity are considered simultaneously to adjust inertia weight adaptively. The algorithm is tested on both simul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 Fifth International Conference on Natural Computation Ročník 3; s. 246 - 250
Hlavní autor: Yufeng Li
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2009
Témata:
ISBN:0769537367, 9780769537368
ISSN:2157-9555
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Dynamic particle swarm optimization algorithm is proposed in this paper to resolve overlapping chromatographic peaks. To accelerate the convergence speed, clustering degree and evolution velocity are considered simultaneously to adjust inertia weight adaptively. The algorithm is tested on both simulated overlapping chromatographic peaks which are based on exponential modified Gaussian convolution model and experimental overlapping chromatographic peaks of multi-component which includes brassicasterol, campesterol, stigmasterol and ß-sitosterol. Results indicate that the presented algorithm has fast convergence speed, high accuracy and reliability, and it can be used to resolve overlapping chromatographic peaks of multi-components.
ISBN:0769537367
9780769537368
ISSN:2157-9555
DOI:10.1109/ICNC.2009.370