Performance Evaluation on Machine Learning Classification Techniques for Disease Classification and Forecasting through Data Analytics for Chronic Kidney Disease (CKD)

Chronic Kidney Disease (CKD) is considered as kidney damage which lasts longer than three months. In Sri Lanka, CKD has become a severe problem in the present days due to CKD of unknown aetiology (CKDu) that can be seen popularly in North Central Province. Identifying CKD in the initial stage is imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE) s. 291 - 296
Hlavní autoři: Gunarathne, W. H. S. D., Perera, K. D. M., Kahandawaarachchi, K. A. D. C. P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2017
Témata:
ISSN:2471-7819
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Chronic Kidney Disease (CKD) is considered as kidney damage which lasts longer than three months. In Sri Lanka, CKD has become a severe problem in the present days due to CKD of unknown aetiology (CKDu) that can be seen popularly in North Central Province. Identifying CKD in the initial stage is important to provide necessary treatments to prevent or cure the disease. In this work main focus is on predicting the patient's status of CKD or non CKD. To predict the value in machine learning classification algorithms have been used. Classification models have been built with different classification algorithms will predict the CKD and non CKD status of the patient. These models have applied on recently collected CKD dataset downloaded from the UCI repository with 400 data records and 25 attributes. Results of different models are compared. From the comparison it has been observed that the model with Multiclass Decision forest algorithm performed best with an accuracy of 99.1% for the reduced dataset with the 14 attributes.
AbstractList Chronic Kidney Disease (CKD) is considered as kidney damage which lasts longer than three months. In Sri Lanka, CKD has become a severe problem in the present days due to CKD of unknown aetiology (CKDu) that can be seen popularly in North Central Province. Identifying CKD in the initial stage is important to provide necessary treatments to prevent or cure the disease. In this work main focus is on predicting the patient's status of CKD or non CKD. To predict the value in machine learning classification algorithms have been used. Classification models have been built with different classification algorithms will predict the CKD and non CKD status of the patient. These models have applied on recently collected CKD dataset downloaded from the UCI repository with 400 data records and 25 attributes. Results of different models are compared. From the comparison it has been observed that the model with Multiclass Decision forest algorithm performed best with an accuracy of 99.1% for the reduced dataset with the 14 attributes.
Author Kahandawaarachchi, K. A. D. C. P.
Perera, K. D. M.
Gunarathne, W. H. S. D.
Author_xml – sequence: 1
  givenname: W. H. S. D.
  surname: Gunarathne
  fullname: Gunarathne, W. H. S. D.
  email: it14029714@my.sliit.lk
  organization: Dept. of Software Eng., Sri Lanka Inst. of Inf. Technol., Malabe, Sri Lanka
– sequence: 2
  givenname: K. D. M.
  surname: Perera
  fullname: Perera, K. D. M.
  email: dulani.p@sliit.lk
  organization: Dept. of Software Eng., Sri Lanka Inst. of Inf. Technol., Malabe, Sri Lanka
– sequence: 3
  givenname: K. A. D. C. P.
  surname: Kahandawaarachchi
  fullname: Kahandawaarachchi, K. A. D. C. P.
  email: chathurangika.k@sliit.lk
  organization: Dept. of Inf. Syst. Eng., Sri Lanka Inst. of Inf. Technol., Malabe, Sri Lanka
BookMark eNpdzL1OwzAUBWCDQKItzAwsHmFI8U-cxGNJW6haBEP36sa5boxSB-IUqU_EaxJUxIB0de5wjr4hOfONR0KuORtzzvT9w-JhNhaMp2PGIqlPyJArmSVcijg9JYM-eZRmXF-QYQhvjCmR6WRAvl6xtU27A2-Qzj6h3kPnGk_7ewZTOY90hdB657c0ryEEZ505TtZoKu8-9hhoL9CpCwgB_6_Al3TetGggdD9IV7XNflvRKXRAJx7qQ-fMUcj7yjtDl670ePgDb_Pl9O6SnFuoA179_hFZz2fr_ClavTwu8skqcpp1EaCJUQqlE4hjzjJgiSqYzETJrM0MgFWx1DphqRUysUypQhTMas0TmxYllyNyc2QdIm7eW7eD9rDJhOKSKfkN40RvEA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BIBE.2017.00-39
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 1538613247
9781538613245
EISSN 2471-7819
EndPage 296
ExternalDocumentID 8251305
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-aec4e32596a44108a065b0382d0ff8caaf54399607f236f055b2b0f9916f7bd13
IEDL.DBID RIE
IngestDate Wed Aug 27 02:44:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-aec4e32596a44108a065b0382d0ff8caaf54399607f236f055b2b0f9916f7bd13
PageCount 6
ParticipantIDs ieee_primary_8251305
PublicationCentury 2000
PublicationDate 2017-Oct
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct
PublicationDecade 2010
PublicationTitle Proceedings / Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE)
PublicationTitleAbbrev BIBE
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0052896
Score 1.9659108
Snippet Chronic Kidney Disease (CKD) is considered as kidney damage which lasts longer than three months. In Sri Lanka, CKD has become a severe problem in the present...
SourceID ieee
SourceType Publisher
StartPage 291
SubjectTerms Chronic-Kidney-Disease;-symptoms;-predictive-models;-machine-learning;-classification-algorithms
Classification algorithms
Data mining
Diseases
Kidney
Logistics
Prediction algorithms
Predictive models
Title Performance Evaluation on Machine Learning Classification Techniques for Disease Classification and Forecasting through Data Analytics for Chronic Kidney Disease (CKD)
URI https://ieeexplore.ieee.org/document/8251305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8MwGMfDHAqefNnEd3LwoGBc2rRpe93WoUzHDjvsNpImkV062Tphn8ivaZ6060S8CC2UEp5CUpo8zf_5_RG6Y57SNDQZETELSCCNR2IVGMITT_BIhfZ0I_0ajUbxdJqMG-ixroXRWjvxmX6CS7eXrxbZGn6VdaDMkgGwdC-KeFmrtf3qhjZx4BW6x6NJp_vSTUG4BYBCAk7gP7xT3NQxOPrfQ49Re1eDh8f17HKCGjo_RQeldeSmhb7GO8U_TmtkN7bHm9NHalyhU9-xM74ESVDZZLLFtq6wjYD75RbN71YiVxh8OzOxAmU0rgx9cF8UAjuUCQCeXYQKsIuHc5XrTR3wvjfsP7TRZJBOes-kMl0g84QWROgs0MzmRFzYhRKNhV2iSMpiX1Fj4kwIE0IGw2lkfMYNDUPpS2pglWkiqTx2hpr5ItfnCAdxIiOubcbny4BxIX2gH0KGyan0M3WBWtDbs48SqzGrOvry79tX6BCGs9TRXaNmsVzrG7SffRbz1fLWvQvfIJK32Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8MwGMfDmIqefNnEd3PwoGBc2rRpe90bG3thhx52G0mTyC6dbJ2wT-TXtE_abSJehBZKCU8hKU2e5v_8_gg9MUdp6puEiJB5xJPGIaHyDOGRI3ig_Py0Iz0MxuNwOo0mFfS6q4XRWlvxmX6DS7uXrxbJGn6VNaDMkgGw9MD3PJcW1Vrb766fpw68hPc4NGo0-80OSLcAUUjAC_yHe4qdPLqn_3vsGarvq_DwZDe_nKOKTi_QUWEeuamhr8le8487O2g3zo-RVUhqXMJT37G1vgRRUNEk3oJbVziPgNvFJs3vViJVGJw7E7ECbTQuLX1wW2QCW5gJIJ5thBKxiwdzlerNLuBza9B-qaO424lbPVLaLpB5RDMidOJplmdFXORLJRqKfJEiKQtdRY0JEyGMDzkMp4FxGTfU96UrqYF1pgmkctglqqaLVF8h7IWRDLjOcz5XeowL6QL_EHJMTqWbqGtUg96efRRgjVnZ0Td_335Ex714NJwN--PBLTqBoS1UdXeomi3X-h4dJp_ZfLV8sO_FN9fzuyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+Annual+IEEE+International+Symposium+on+Bioinformatics+and+Bioengineering+%28BIBE%29&rft.atitle=Performance+Evaluation+on+Machine+Learning+Classification+Techniques+for+Disease+Classification+and+Forecasting+through+Data+Analytics+for+Chronic+Kidney+Disease+%28CKD%29&rft.au=Gunarathne%2C+W.+H.+S.+D.&rft.au=Perera%2C+K.+D.+M.&rft.au=Kahandawaarachchi%2C+K.+A.+D.+C.+P.&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2471-7819&rft.spage=291&rft.epage=296&rft_id=info:doi/10.1109%2FBIBE.2017.00-39&rft.externalDocID=8251305