Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning

Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2017 Chinese Automation Congress (CAC) s. 6211 - 6216
Hlavní autori: Yuxiang Zhang, Bingzhao Gao, Lulu Guo, Hong Chen, Jinghua Zhao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2017
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality.
DOI:10.1109/CAC.2017.8243896