Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning
Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the...
Uložené v:
| Vydané v: | 2017 Chinese Automation Congress (CAC) s. 6211 - 6216 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2017
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality. |
|---|---|
| DOI: | 10.1109/CAC.2017.8243896 |