Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning

Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2017 Chinese Automation Congress (CAC) s. 6211 - 6216
Hlavní autoři: Yuxiang Zhang, Bingzhao Gao, Lulu Guo, Hong Chen, Jinghua Zhao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2017
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recently, advanced control methods like machine leaning are increasingly applied to autonomous vehicle. This paper focuses on velocity control in a right-turn traffic scenario. A Markov Decision Processes(MDPs) is modeled and the actor-critic reinforcement learning architecture is employed. Then the kernel-based least squares policy iteration algorithm(KLSPI) is applied. Simulation results show that the proposed method can perform different policy in different cases, which preliminarily verify the rationality.
DOI:10.1109/CAC.2017.8243896