FPGA Implementation of a Probabilistic Neural Network for Spike Sorting

Hardware implementation of Neural Networks (NNs) provides advantages such as parallelism and real-time capabilities, whereas Probabilistic Neural Networks (PNNs) achieve high accuracy in pattern discrimination. In this paper, a FPGA implementation of a PNN sorting algorithm is proposed to sort spike...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 2nd International Conference on Information Engineering and Computer Science s. 1 - 4
Hlavní autoři: Xiaoping Zhu, Longtao Yuan, Dong Wang, Yaowu Chen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2010
Témata:
ISBN:1424479398, 9781424479399
ISSN:2156-7379
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Hardware implementation of Neural Networks (NNs) provides advantages such as parallelism and real-time capabilities, whereas Probabilistic Neural Networks (PNNs) achieve high accuracy in pattern discrimination. In this paper, a FPGA implementation of a PNN sorting algorithm is proposed to sort spikes. Both Matlab-based and FPGA-based sorting algorithms using a PNN were implemented and evaluated, and results show that FPGA's implementation is about 44.37 times faster than Matlab's realization with the same accuracy. This novel method indicates that the performance of current FPGAs is capable of portable device application.
ISBN:1424479398
9781424479399
ISSN:2156-7379
DOI:10.1109/ICIECS.2010.5677694