An improved recursive least squares algorithm robust to input power variation

This paper proposes a new recursive least-squares adaptive algorithm that improves the steady-state performance of the recently proposed variable memory length (VML) algorithm. Most RLS-type algorithms tend to increase the error in the estimated weight vector during reduced power situations. Like VM...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/SP 13th Workshop on Statistical Signal Processing, 2005 s. 137 - 140
Hlavní autoři: Ludovico, C.S., Bermudez, J.C.M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2005
Témata:
ISBN:9780780394032, 0780394038
ISSN:2373-0803
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a new recursive least-squares adaptive algorithm that improves the steady-state performance of the recently proposed variable memory length (VML) algorithm. Most RLS-type algorithms tend to increase the error in the estimated weight vector during reduced power situations. Like VML, the new algorithm, called robust VML (RVML), is robust in system identification applications in which the input power is significantly reduced during operation. The RVML algorithm, however, improves the robustness of the VML algorithm when there is significant input power variations during convergence. It should encounter application in systems such as automotive suspension fault detection and adaptive control, and system identification using speech signals. In both cases, considerable periods of power variation during operation are common
ISBN:9780780394032
0780394038
ISSN:2373-0803
DOI:10.1109/SSP.2005.1628579