A brief study on clustering methods: Based on the k-means algorithm

Clustering is the process of grouping a set of objects into classes. The clustering problem has been addressed by researchers in many contexts and disciplines. First, a process model for data mining and the typical requirements of clustering methods have been described. Second, the k-means algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 International Conference on E-Business and E-Government s. 1 - 5
Hlavní autoři: Peng, Chen, Guiqiong, Xu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2011
Témata:
ISBN:9781424486915, 1424486912
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering is the process of grouping a set of objects into classes. The clustering problem has been addressed by researchers in many contexts and disciplines. First, a process model for data mining and the typical requirements of clustering methods have been described. Second, the k-means algorithm and its advantages and disadvantages are introduced. Then the Iris dataset is used to specify the k-means algorithm. A taxonomy of clustering algorithms and complexity of several algorithms are listed in the end.
ISBN:9781424486915
1424486912
DOI:10.1109/ICEBEG.2011.5881902