Multiple ocular artifacts removal based on high-order statistical tensor algorithm

The aim of this paper is to propose a multiple ocular artifacts (OAs) removal method using the high order tensor algorithm. Four categories high order tensor methods are adopted to separate the real electroencephalogram (EEG) and ocular signals by underdetermined blind source separation (UBSS) model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG) s. 1 - 4
Hlavní autoři: Ge, Sunan, Yang, Yan, Ni, Wei, Zhang, Rui
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this paper is to propose a multiple ocular artifacts (OAs) removal method using the high order tensor algorithm. Four categories high order tensor methods are adopted to separate the real electroencephalogram (EEG) and ocular signals by underdetermined blind source separation (UBSS) model. The correlation coefficient and the non-negativity are adopted to choose the suitable UBSS algorithm. The ocular components are identified by the kurtosis value after separating between EEG and ocular signals. Then, the free-ocular sources components are reconstructed to EEG without OAs. The simulations show that the proposed method can effectively remove the OAs. At the same time, it also can retain the useful information after removing OAs.
DOI:10.1109/IGBSG.2018.8393530