Cooperative Q-learning based on learning automata

The theory of learning automata has already been applied in reinforcement learning which is characterized by single-agent and single-stage. This paper proposed a multi-robot cooperative Q-learning algorithm based on learning automata. Each robot updates probability for action selection through the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 IEEE International Conference on Automation and Logistics S. 1973 - 1978
Hauptverfasser: Mao Yang, Yantao Tian, Xinyue Qi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2009
Schlagworte:
ISBN:9781424447947, 1424447941
ISSN:2161-8151
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theory of learning automata has already been applied in reinforcement learning which is characterized by single-agent and single-stage. This paper proposed a multi-robot cooperative Q-learning algorithm based on learning automata. Each robot updates probability for action selection through the learning automata constantly, and then converts the probability to special experience. Robots can accelerate the learning process by means of sharing experiences among each other. Simulation experiments verify the effectiveness of this algorithm.
ISBN:9781424447947
1424447941
ISSN:2161-8151
DOI:10.1109/ICAL.2009.5262629