Automatic firewall rules generator for anomaly detection systems with Apriori algorithm

Network intrusion detection systems have become a crucial issue for computer systems security infrastructures. Different methods and algorithms are developed and proposed in recent years to improve intrusion detection systems. The most important issue in current systems is that they are poor at dete...

Full description

Saved in:
Bibliographic Details
Published in:2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE) Vol. 6; pp. V6-57 - V6-60
Main Authors: Saboori, Ehsan, Parsazad, Shafigh, Sanatkhani, Yasaman
Format: Conference Proceeding
Language:English
Published: IEEE 01.08.2010
Subjects:
ISBN:1424465397, 9781424465392
ISSN:2154-7491
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network intrusion detection systems have become a crucial issue for computer systems security infrastructures. Different methods and algorithms are developed and proposed in recent years to improve intrusion detection systems. The most important issue in current systems is that they are poor at detecting novel anomaly attacks. These kinds of attacks refer to any action that significantly deviates from the normal behaviour which is considered intrusion. This paper proposed a model to improve this problem based on data mining techniques. Apriori algorithm is used to predict novel attacks and generate real-time rules for firewall. Apriori algorithm extracts interesting correlation relationships among large set of data items. This paper illustrates how to use Apriori algorithm in intrusion detection systems to cerate a automatic firewall rules generator to detect novel anomaly attack. Apriori is the best-known algorithm to mine association rules. This is an innovative way to find association rules on large scale.
AbstractList Network intrusion detection systems have become a crucial issue for computer systems security infrastructures. Different methods and algorithms are developed and proposed in recent years to improve intrusion detection systems. The most important issue in current systems is that they are poor at detecting novel anomaly attacks. These kinds of attacks refer to any action that significantly deviates from the normal behaviour which is considered intrusion. This paper proposed a model to improve this problem based on data mining techniques. Apriori algorithm is used to predict novel attacks and generate real-time rules for firewall. Apriori algorithm extracts interesting correlation relationships among large set of data items. This paper illustrates how to use Apriori algorithm in intrusion detection systems to cerate a automatic firewall rules generator to detect novel anomaly attack. Apriori is the best-known algorithm to mine association rules. This is an innovative way to find association rules on large scale.
Author Sanatkhani, Yasaman
Parsazad, Shafigh
Saboori, Ehsan
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Saboori
  fullname: Saboori, Ehsan
  email: ehsansaboori@sina.kntu.ac.ir
  organization: K.N Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Shafigh
  surname: Parsazad
  fullname: Parsazad, Shafigh
  email: Shafigh.Parsazad@stu-mail.um.ac.ir
  organization: Ferdowsi University, University of East London, Mashhad, Iran
– sequence: 3
  givenname: Yasaman
  surname: Sanatkhani
  fullname: Sanatkhani, Yasaman
  organization: Ferdowsi University, University of East London, Mashhad, Iran
BookMark eNo9UMtqwzAQVGkKTdJ8QS76Aad6WtbRmLQpBHox9Bhke5Wo-FEkheC_r6ChC8swwzLM7AotxmkEhLaU7Cgl-vWjKqt6v2MkCVIqzXP5gFZUMCFyKZh6_CdcqwVaMipFpoSmz2gTwjdJIySTqliir_Iap8FE12LrPNxM32N_7SHgM4zgTZw8tmnNmK76GXcQoY1uGnGYQ4Qh4JuLF1z-eDd5h01_ThAvwwt6sqYPsLnjGtVv-7o6ZMfP9xT_mDlNYqYsKwjhtFCiUcQS0XYN58CIyWlq0HQNa2TbGtBgrADgtrBc6Vxz2XJCGV-j7Z-tA4BTCjEYP5_uP-G_pXtXNA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACTE.2010.5579365
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424465427
9781424465415
9781424465422
1424465419
EndPage V6-60
ExternalDocumentID 5579365
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-7f280031874b70f04cdb33e20a61142bdb2b5ccae9eaf4ee3f8f3796935c30123
IEDL.DBID RIE
ISBN 1424465397
9781424465392
ISSN 2154-7491
IngestDate Wed Sep 03 07:11:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7f280031874b70f04cdb33e20a61142bdb2b5ccae9eaf4ee3f8f3796935c30123
ParticipantIDs ieee_primary_5579365
PublicationCentury 2000
PublicationDate 2010-Aug.
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-Aug.
PublicationDecade 2010
PublicationTitle 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)
PublicationTitleAbbrev ICACTE
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452578
ssj0000328620
Score 1.5465757
Snippet Network intrusion detection systems have become a crucial issue for computer systems security infrastructures. Different methods and algorithms are developed...
SourceID ieee
SourceType Publisher
StartPage V6-57
SubjectTerms Anomaly detection
Apriori algorithm
Association rule learning
Association rules
Classification algorithms
Data mining
Firewalls (computing)
Intrusion
Intrusion detection
Intrusion detection systems
Itemsets
Real-time systems
Software
Training
Title Automatic firewall rules generator for anomaly detection systems with Apriori algorithm
URI https://ieeexplore.ieee.org/document/5579365
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZaxMBUoEW85YGR0CRO4nisqlawVB0q0a3y41wihbRKExD_HttJi5BYmGJHkRz5dffd4zuEHvxYasnj1DOqrTQAhXPPwGbhpUmUghAx0Tp1xSbobJYul2zeQY-HXBgAcMFn8GSbzpevNrK2prJhHJvdlMRd1KU0aXK1DvYUywuXtKqP61uHnbuIjVCLPBqxYJ_XZdlY6Z7uqe2HLSNR4LPhy3g0XkyasK92yF-1V5zomfb-99OnaPCTw4fnB-l0hjpQnKPevogDbs90H72O6mrjeFuxNtffJ89zXNY57PDaMVIbTI6NYot5Yb7Kv7CCykVvFbghgd5ha8rFo22ZbcoM83xtHtXb-wAtppPF-Nlrqy14GfMrj-owdSecRoL62o-kEoRA6PPEptsKJUIRm-UGBlxHAESnmlCWMBJLYhWzC3RUbAq4RDgQQlGueMRCgz9kxHQoFUBgsBIhoVJXqG-nabVt-DRW7Qxd__36Bp00HnsbdHeLjqqyhjt0LD-qbFfeu03wDV3WrOg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7eQJ-8bOLdPPhoXdckbfM4xkRxjj0M3NvI5WQOaiddp_jvTdJuIvjiU5NSSMntnO9cvoPQTciUUYKlgVVtlQUoQgQWNssgjWkKUjJiTOqLTSSDQToe8-EGul3nwgCADz6DO9f0vnw9V0tnKmsxZndTzDbRNqM0CqtsrbVFxTHDxbXy4_vOZeevYivWaJBQ3l5ldjk-1mRF-FT3o5qTqB3y1mO30x31qsCvetBf1Ve88Lnf_99vH6DmTxYfHq7l0yHagPwI7a_KOOD6VDfQS2dZzj1zKzb2AvwUWYaLZQYLPPWc1BaVY6vaYpHbr7IvrKH08Vs5rmigF9gZc3HnvZjNixkW2dQ-yte3Jhrd90bdh6CutxDMeFgGiYlSf8YTKpPQhFRpSQhEoYhdwq3UMpLMLjhwEIYCEJMakvCYE6aIU82O0VY-z-EE4baUOhFaUB5ZBKIoN5HSAG2LlgiJtD5FDTdNk_eKUWNSz9DZ36-v0e7D6Lk_6T8Ons7RXuW_dyF4F2irLJZwiXbURzlbFFd-Q3wDj9SwLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+3rd+International+Conference+on+Advanced+Computer+Theory+and+Engineering%28ICACTE%29&rft.atitle=Automatic+firewall+rules+generator+for+anomaly+detection+systems+with+Apriori+algorithm&rft.au=Saboori%2C+Ehsan&rft.au=Parsazad%2C+Shafigh&rft.au=Sanatkhani%2C+Yasaman&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424465392&rft.issn=2154-7491&rft.volume=6&rft.spage=V6-57&rft.epage=V6-60&rft_id=info:doi/10.1109%2FICACTE.2010.5579365&rft.externalDocID=5579365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2154-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2154-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2154-7491&client=summon