Applying brain emotional learning based fuzzy inference system for EEG signal classication between schizophrenics and control participant

This paper concerns the diagnosis of schizophrenia using encephalographic signals and introduces a new framework based on image processing technique. Time-frequency approach or spectrogram image processing technique was used to analyze EEG signals. The spectrogram images were formed from EEG signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) S. 1 - 8
Hauptverfasser: Khasraghi, Bahar Javadi, Setayeshi, Saeed, Price, Greg
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper concerns the diagnosis of schizophrenia using encephalographic signals and introduces a new framework based on image processing technique. Time-frequency approach or spectrogram image processing technique was used to analyze EEG signals. The spectrogram images were formed from EEG signals, then the Gray Level Co-occurrence Matrix (GLCM) texture feature was extracted from the images. This texture feature produced huge matrix data, thus we used locally linear embedding algorithm (LLA) to reduce the big matrix. In this model, the neuro-based computational model on the limbic system was used to discriminate subjects with schizophrenia patients and control participant that models the emotional process. This architecture is a merging algorithm based on brain emotional learning and fuzzy inference system. The results showed that the proposed model is able to classify the electroencephalographic spectrogram image with 81.5% accuracy.
AbstractList This paper concerns the diagnosis of schizophrenia using encephalographic signals and introduces a new framework based on image processing technique. Time-frequency approach or spectrogram image processing technique was used to analyze EEG signals. The spectrogram images were formed from EEG signals, then the Gray Level Co-occurrence Matrix (GLCM) texture feature was extracted from the images. This texture feature produced huge matrix data, thus we used locally linear embedding algorithm (LLA) to reduce the big matrix. In this model, the neuro-based computational model on the limbic system was used to discriminate subjects with schizophrenia patients and control participant that models the emotional process. This architecture is a merging algorithm based on brain emotional learning and fuzzy inference system. The results showed that the proposed model is able to classify the electroencephalographic spectrogram image with 81.5% accuracy.
Author Setayeshi, Saeed
Khasraghi, Bahar Javadi
Price, Greg
Author_xml – sequence: 1
  givenname: Bahar Javadi
  surname: Khasraghi
  fullname: Khasraghi, Bahar Javadi
  email: bahar.javadi.ai@gmail.com
  organization: Department of Computer Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: Saeed
  surname: Setayeshi
  fullname: Setayeshi, Saeed
  email: setayesh@aut.ac.ir
  organization: Department of Energy Engineering and Physics, Amirkabir University, Tehran, Iran
– sequence: 3
  givenname: Greg
  surname: Price
  fullname: Price, Greg
  email: Greg.Price@health.wa.gov.au
  organization: University of Western Australia, Graylands Hospital, Perth, Australia
BookMark eNotkMFOAjEURWuiC0V-QDfvB8CWtrRdwgSRhMQNe9LpvEKToZ20Y8zwB_61oKzu4t5zFveJ3McUkZAXRqeMUfNWbZbVcjqjTE01lVpKeUfGRmkm5opro7V4JD-LrmuHEA9QZxsi4Cn1IUXbQos2x7_CFmzAf53PA4ToMWN0CGUoPZ7Apwyr1RpKOFwh19pSgrNXB9TYfyNGKO4Yzqk7XsDgCtjYgEuxz6mFzuY-uNDZ2D-TB2_bguNbjsjufbWrPibbz_WmWmwnwdB-oqyoFa-NYI5plHPWNFbymWC8bpRxhntJlaLCCI30svP-AjSi5tJRPvOOj8jrvzYg4r7L4WTzsL_9w38Bt2Vi-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIBCB.2017.8058555
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467389884
1467389889
EndPage 8
ExternalDocumentID 8058555
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-7a4b73b941c18e561dda532413bd79c93f507704948e03b9ffa4bd4b35c032fc3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7a4b73b941c18e561dda532413bd79c93f507704948e03b9ffa4bd4b35c032fc3
PageCount 8
ParticipantIDs ieee_primary_8058555
PublicationCentury 2000
PublicationDate 2017-Aug.
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug.
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
PublicationTitleAbbrev CIBCB
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.641664
Snippet This paper concerns the diagnosis of schizophrenia using encephalographic signals and introduces a new framework based on image processing technique....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Amygdala
Analytical models
Biological neural networks
Brain modeling
Computational modeling
Electroencephalography
Emotional learning
Fuzzy
Orbitofrontal
Schizophrenics
Spectrogram
Title Applying brain emotional learning based fuzzy inference system for EEG signal classication between schizophrenics and control participant
URI https://ieeexplore.ieee.org/document/8058555
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LagIxFA0qXXTVFi19cxdddnQembmTraJtoYgLKe4kTxDKKDoK9Q_6101mUttCN92FPOFmcQ_JOfcQcp-hjjBSNDAo8oAaKgJOMQ5YLKRkoUBZ6SteX3A8zmczNmmQh4MWRmtdkc901zWrv3y1lFv3VNbLQwtu07RJmohZrdX60sGErDd47g_6jqyFXT_xl2NKlTBGJ_876pR0vpV3MDnklDPS0EWbfDio6ORIIJyhA-jaeoe_gfd8sAM2GSkw2_3-HRaHneoyzWBxKQyHj-C4GnaRdIDZP9WB52nB5gf5Tm6AFwo8ix1W3FOvi7JDpqPhdPAUeAuFYMHCMkBOBSaC0UhGubZQSSmeJu4rTShkkiXGwkGsSsTo0M4zxi5QVCSpDJPYyOSctIploS8IKJ1zpJKyTCLN0lhEnKU0jjGUPBcpuyRtF8X5qi6SMfcBvPq7-5ocu4uqmXQ3pFWut_qWHMldudis76qb_QTavaqj
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFL1BNNGVGjC-7cKlA52Zlk63EBAiEhbEsCN9TUJiBgKDifyBf207U1ETN-6aPpPbxT1pz7kH4L7FTMhCTYKUySQgKZGBICwKeCSV4lgyVegrXoZsNEqmUz6uwMNOC2OMKchnpuGaxV--XqiNeyprJtiCW0r3YJ8SEuFSrfWlhMG82Rm0O21H12INP_WXZ0qRMnrH_zvsBOrf2js03mWVU6iYrAYfDiw6QRKSztIBmdJ8R7wi7_pgB2w60ijdbLfvaL7bqSzUjCwyRd3uI3JsDbtIOcjsH-uQZ2qh9Q_6nVojkWnkeexoKTz5OsvrMOl1J51-4E0UgjnHecAEkSyWnIQqTIwFS1oLGrvPNKkZVzxOLSBkRZEYg-28NLULNJExVTiOUhWfQTVbZOYckDaJYEQR3lKMtGgkQ8EpiSKGlUgk5RdQc1GcLcsyGTMfwMu_u-_gsD95Hs6Gg9HTFRy5Syt5dddQzVcbcwMH6i2fr1e3xS1_AuEgreo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computational+Intelligence+in+Bioinformatics+and+Computational+Biology+%28CIBCB%29&rft.atitle=Applying+brain+emotional+learning+based+fuzzy+inference+system+for+EEG+signal+classication+between+schizophrenics+and+control+participant&rft.au=Khasraghi%2C+Bahar+Javadi&rft.au=Setayeshi%2C+Saeed&rft.au=Price%2C+Greg&rft.date=2017-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCIBCB.2017.8058555&rft.externalDocID=8058555