Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems

An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) s. 242 - 249
Hlavní autoři: Derong Liu, Ding Wang, Dongbin Zhao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2011
Témata:
ISBN:1424498872, 9781424498871
ISSN:2325-1824
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optimal controller with convergence analysis. Three neural networks are used as parametric structures to facilitate the implementation of the iterative algorithm, which will approximate at each iteration the cost function, the optimal control law, and the unknown nonlinear system, respectively. Two simulation examples are provided to verify the effectiveness of the presented optimal control approach.
ISBN:1424498872
9781424498871
ISSN:2325-1824
DOI:10.1109/ADPRL.2011.5967357